

Web Technology

Unit-3
XML

Unit – 3: XML

Outline

1. Introduction

• Introduction to XML

• Features of XML

• XML Key Component

2. Document Type Definition (DTD)

3. XML Schemas

4. XSL

5. XSLT

Unit – 3: XML

Introduction to XML
 XML stands for eXtensible Markup Language

 XML is a language to describe other languages.

 Its main purpose is to allow the sharing of data across different
type of systems and it is particularly useful in this sense for
applications that do this over the internet.

 Example :
 <?xml version=“1.0”>

<person>

 <first>Narendra</first>

 <last>Modi</last>

 <birthdate>01/01/45</birthdate>

 <employed started=“01/02/03”>

 Prof. @ Darshan college

 </employed>

</person>

Here person is root element

Here started is an attribute of
element employed

Unit – 3: XML

Features of XML

 It is in a format that both human and machines can read.

 It supports Unicode.

 It supports data structures.

 It is self-documenting.

 It has a strict format that makes it easy for parsing to take place.

 It can be understood and exchanged between dissimilar systems.

 It can be useful for swapping data between different applications.

Unit – 3: XML

XML Key Component

 One of the key aspects of XML is how strict the syntax is.

 There are mainly 3 components of the XML

1. Elements

2. Attribute

3. Namespace

Unit – 3: XML

1) Elements

 The strict syntax of XML contains a few rules about elements that
must be adhered to:

• Elements must have a closing tag.

• Tags are case sensitive

• Elements must be nested correctly

• XML documents must have a root element.

 Example :

<birthdate>26th October 1788</birthdate>

<Birthdate>26th October 1788</birthdate> (elements are case sensitive)

<i>Hello</i> (elements not nested properly)

<i>Hello</i>

Unit – 3: XML

2) Attributes

 Attributes can be added to elements in XML but must always be

quoted.

 For Example, here employed is a element and started is the

attribute of the element employed.

<employed started=“10/11/12”>Darshan, Rajkot </employed>

<employed started=10/11/12>Darshan, Rajkot </employed>

Value must be quoted

Unit – 3: XML

3) Namespace

 Sometimes in XML there is a danger of conflicting names between

documents.

 Example :

• You create one document with name element for the professor, it may also

possible someone else create a document with name element for the

animal name, so to avoid the conflict we can use namespaces.

 Namespace usually take the form of a URL, beginning with a

domain name, an optional namespace label in the form of a

directory name and finally a version number, which is also

optional.

 xmlns = “http://www.mydomain.com/ns/animals/1.1”

Unit – 3: XML

3) Namespace (Example)

 This XML carries information

about a table (a piece of

furniture):

<table>
 <name>Saag table</name>
 <width>3</width>
 <length>6</length>
 <weight>5kg</weight>
</table>

 This XML carries HTML table

information:

<table>
 <tr>
 <td>Apples</td>
 <td>Bananas</td>
 </tr>
</table>

Unit – 3: XML

3) Namespace (Example) (Cont.)

 To solve the conflict problem

we can use namespace of

furniture table.

 Example :

<table>
 <name>Saag table</name>
 <width>3</width>
 <length>6</length>
 <weight>5kg</weight>
</table>

 To solve the conflict problem

we can use namespace of html

table.

 Example :

<table>
 <tr>
 <td>Apples</td>
 <td>Bananas</td>
 </tr>
</table>

<table
xmlns:h=“http://www.w3.org
/TR/html4/”>
 <tr>
 <td>Apples</td>
 <td>Bananas</td>
 </tr>
</table>

<h:table
xmlns:h=“http://www.w3.org
/TR/html4/”>
 <h:tr>
 <h:td>Apples</h:td>
 <h:td>Bananas</h:td>
 </h:tr>
</h:table>

<table
xmlns:f=“http://darshan.ac.in/fu
rntiture”>
 <name>Saag table</name>
 <width>3</width>
 <length>6</length>
 <weight>5kg</weight>
</table>

<f:table
xmlns:f=“http://darshan.ac.in/fu
rntiture”>
 <f:name>Saag table</f:name>
 <f:width>3</f:width>
 <f:length>6</f:length>
 <f:weight>5kg</f:weight>
</f:table>

Unit – 3: XML

XML Key Component (Cont.)

 White space is preserved in XML where as in HTML it is truncated

down to just a single space.

 One thing does remain in common with HTML though is

comments,

• Comments can be added using the triangle brackets like this:

 <!-- here are some remarks -->

Unit – 3: XML

Document Type Definition (DTD)

 XML is particularly concerned with being well formed or correct in

syntax.

 There are two ways of checking whether the document follows

expected order and structure

• Document Type Definitions (DTDs)

• Schemas

 A Document Type Definition (DTD) defines the legal building

blocks of an XML document.

 A DTD can be declared inline inside an XML document, or as an

external reference

Unit – 3: XML

Why Use a DTD?

 With a DTD, each of your XML files can carry a description of its

own format.

 With a DTD, independent groups of people can agree to use a

standard DTD for interchanging data.

 Your application can use a standard DTD to verify that the data

you receive from the outside world is valid.

Unit – 3: XML

DTD (Example)

<?xml version="1.0"?>

<!DOCTYPE note [

 <!ELEMENT note (to,from,title,message)>

 <!ELEMENT to (#PCDATA)>

 <!ELEMENT from (#PCDATA)>

 <!ELEMENT title (#PCDATA)>

 <!ELEMENT message (#PCDATA)>

]>

Unit – 3: XML

DTD (Cont.)

 DTD can be internal or external

 If it is internal than simply put previous code to the top of the

XML file

 If it is external than save it as .dtd file extension and refer it from

XML,

 <!DOCTYPE note SYSTEM “note.dtd”>

Unit – 3: XML

DTD Elements

 We can specify the number of occurrences of the elements using
+, *, ? and | operators (works ~ similar to Regular Expression)

 Example :

• <!ELEMENT note(to+,from,title?,message*) />

 Above example suggest that root element of the xml must be note

and should have one or more (+) recipients, sender should be only
one, title must be one or zero(?) and messages can be zero or
more(*).

 We can also specify to have either one of the elements using |
operator

• <!ELEMENT note(to,from,title,message|information) >

 In above declaration we have specified that either message should
be there or the information element should be there in the note

Unit – 3: XML

DTD Attribute

 We can specify the attributes also using DTD using ATTLIST

declaration.

 Syntax:

<!ATTLIST element-name attribute-name attribute-type default-value >

 Example :

<!ATTLIST employed started CDATA “01/01/01”>

 We can also specify required or fixed for the attribute

 Example :

<!ATTLIST employed started CDATA #REQUIRED>

<!ATTLIST employed started CDATA #FIXED “01/01/01”>

This is the default value for started

This suggest that started is mandatory
field

Unit – 3: XML

XML Schema

 XML Schema is an XML-based alternative to DTD

 An XML schema describes the structure of an XML document.

 The XML Schema language is also referred to as XML Schema

Definition (XSD)

 An XML Schema

• defines elements that can appear in a document

• defines attributes that can appear in a document

• defines which elements are child elements

• defines the order of child elements

• defines data types for elements and attributes

• defines default and fixed values for elements and attributes

Unit – 3: XML

XML Schema (cont.)

 XML Schemas are the Successors of DTDs

• XML Schemas are extensible to future additions

• XML Schemas are richer and more powerful than DTDs

• XML Schemas are written in XML

• XML Schemas support data types

• XML Schemas support namespaces

Unit – 3: XML

XML Schema (Example)

note.xsd

<?xml version="1.0"?>

<xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema >

<xs:element name="note“>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="to" type="xs:string"/>

 <xs:element name="from" type="xs:string"/>

 <xs:element name="heading" type="xs:string"/>

 <xs:element name="body" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

Unit – 3: XML

XML Schema (Example) (cont)

<?xml version="1.0"?>

<note

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=“note.xsd“>

 <to>Darshan</to>

 <from>Student</from>

 <heading>Reminder</heading>

 <body>Don't forget to attend lecture thisweekend!</body>

</note>

Unit – 3: XML

Data Types in XSD

 xs:string

 xs:decimal

 xs:integer

 xs:boolean

 xs:date

 xs:time

 Etc…..

Unit – 3: XML

Complex Types in XSD

 Complex elements can be built that contain other elements and

attributes.

 For example,

<xs:complexType name=“productinfo”>

 <xs:sequence>

 <xs:element name=“item” type=“xs:string” />

 <xs:element name=“itemcode” type=“xs:string” />

 </xs:sequence>

</xs:complexType>

<xs:element name=“food” type=“productinfo”/>

<xs:element name=“magazine” type=“productinfo”/>

<xs:element name=“clothes” type=“productinfo”/>

Unit – 3: XML

Default ,Fixed and Required Values

 To define attribute a similar style is adopted, for example for the

XML element :

<firstname lang=“English”>Narendra</firstname>

 XSD would be

<xs:attribute firstname="lang" type="xs:string"/>

 Default value attribute in XSD

<xs:attribute firstname="lang" type="xs:string" default="EN"/>

 Fixed value attributes in XSD

<xs:attribute firstname ="lang" type="xs:string" fixed="EN"/>

 Required value attributes in XSD

<xs:attribute firstname ="lang" type="xs:string" use="required"/>

