Object Oriented Programming in C++

Contents
1.1 Procedure-Oriented PrOZIAIIMIIIE ... c..oiiii e et eetetese e ses s seses se sre s e esses ses ses se sreeaenen seesreeseesessenes |
12 Object Onented Programming Paradignme.. ..o i o s iamn ot diiaimsidasas
1.3 A way of Viewing World AZent (OBBCL)v i i ettt ses e o cees seesee sreseeeaeeamseses seasem s5esee s ensessese cassassessess cann
I4: Computation as SIMIIRTON i i s ssaids fities s e a3 s e e S es Vo i i e o S o oo

2 C1aSSES AN MENOMS . v .ve oo et oot e ess s s e e s 1o et et e 1 e cre
2.1 Historical BACKETOUNA 0f G+ ..vvviiuueieecoveeossoeessosseesssseessesssssessesseessss et sessessss sssess e son s s sessesssshonssessensssoessenssssss o

oD D D Do 00~ DN e

[oa—

ro

(R

232 Creating structure variable ittt st v s e sedase o B w00 Tassnbions sed a5 tonasn siesasn tonssn sisisas snk ans suieions

et

233 Accessing member of StUCTUIE ..o in v v e e

=

2.4 Basic Concept of Object-Oriented Programimingco..owe e e iien sesseeeeecnssesses sesses ses e eesessesses sessessesses sessesssns

>

25.1 Access Specifiers (Visibility Labels) o8 oo BB it ie e st s s s s sim e s s s s s s sanees
252 CTEALIIE (DJBOES ...ttt st een eereeee sesen sees e enen Sefane sea seen Sebaes aea een eeesses aee 2ee 20 eo £ eeen enmen 2ee 2ee 22t 2ot £ebe eee 2ussun ek et ennen see ees sus

=T - =R]

253 Aceessing:clasy members::oasun Sl TS D nrsinnnasinsnnissinsnmRsSERsTISTE
255 Private M e b er Fum O OIS L i ot et e ceet st e oo et e o ce et eees s se e ee er et emefes s see eemnes s see e ee enen sen

|
b = O

3]
o

257 Memory: ATOCATONTOT XIBIECE S, i iiii v ssuoiviesuisis s asiiivesssons oo isess s s5aieds sossis v 45 ess somsions sbes s shbies it swavsieds
23 Ohjects a8 T A T T eI oo o s s i VA i Vs R i e

[T S N
-~ o =

2.8 Retmming oBect FOMFRIICIION <o iniommsisiiimsmsissiianimim siisns ssisam o s s sik 4 oms oo ss5iiesd s583as sik 45 im 5040 565 045 0as 575 558004 s A i 10

]
on

29 Do T Ll (0 L e s L=

[
o0

lad
=

(8]
—

(]
(£

L I B
-~ > th

L8]
e |

2:16: State and Behavior o O D0t i i i i iy Gy G e s s

(N]
o |

==

Object Oriented Programming in C++

3 Message, Instance and INTHAHZAIION . ..ccoooii i i et sttt e et sttt e s st et e e st een es s e e saes es st st sre et senben senan enes F O3
3.1 e SRR T PABRITIE oo tiaintiin e e s T e e L L e R e e D e D
321 Multiple Constructor (Constructor Overloading).c.ccc e eeieeirierseere serries sesses sesseet e eneesrses sesses seesses sesses seeseesnes 41

3.4 Constructors with default ATGUIMENTcoovii it e st e st st e ser et e e e seessaesenaeneesanesennes sennens e s OO
3.6 Dynamic Initialization of OBJECIS ..o i s s s s sisens sessis sns sassss st sissnn ssssesssss sns siiliagovs sns son biesse 29
3.7 Memory Mapping, Allocation and RECOVEIY ... e e st ser et e e e e ee e bbb s e sarbti 58 sennee I
372 MW AN DR LE OPIBTARIE s csuisasisss ssuossiasiess ssuioss avisiess ssuoss avis dmesssioss suus dmossvsmaadioss ssonsiouisimossvnsnd s BRRRPR cussiess sswoussssimad]

3.8 Dynamic Constructor & Destructor (Dynamic Memory allocation using constructor:& Dcstru-ctnr.j S

4 Object Inheritance and Rensability ... i i i i s see e ens ve o8y sov eo o B o se simnss nimnm e ns sen senriee D)
4.2 FORMS OF INHERITANCE (SUB CLASS/SUB TYPES).....ccoitii it oot 545807 eemee sesenseeaesssesseassans asaeesessnsnne I
4.3 Defining Derived Class (Specifying Derived Class). ...t inis i senses i sersne e isress e sns siesesssss st sessussnssersnns ses 90
A Type OF TARBFLRICE", ... cnsrisninrimnsissinrisssis i il foir B v o455 inai i e Sai e s s LS8 B S L B wa i e i O
443 Higrarchical TONIIEATICE ., ouiiimi i i B ssihsiossis siosasins vy prossssin fass syt e ars s mnabin ey pYE L84 B oA RO e s inia s i s RO

4.7 Casting Base Class Pointer to Derived Class POINIErS ... s s s e 14
4.8 Constriactors and:Pestructors in inheritance ... i s s e s s s s e e ans)
492 HAS-A Rule (Container Class/Containership/Composition) oo s s e s eee e e 80
4.10 Composition/Container V5 INDETILANCE .-.....ocui i immi st isnim it s sssosm st sssams sos sisass somosmass sssns sossiassssns sossisass svmosmsssnevs B
4.11 Pros and Cons of INheritanceo.ci it s s s st st s en s sen s s aes O]
4.12 Subclass Subtype and Principle of Substitutability ..o e e e e e B
52 Classification of Palymorplisid ..o nmiisdins s diissmisdaibaiismusiiismaniismanismn s i3

521 Compile Tiivie POIWIEILETIL, c.c. oo vsiriosasn somsvssasn soisnssieiass oo svs ssisiads s s¥s s ss siayssifesiads s s¥s s s sinhssfoss sss sinyssinais siinnss OO

Object Oriented Programming in C++

522 Run Time PolyImorphisinn .o i i st o siidsu sskeosssiase ios ssss ssb sistos sss s sud sekoss ook sso sos ssebid s sed ovss sid sussukonsosibons O3
53 Pncon e OB m s TT b oo it s s S S S T D D
55 Overloading Unary and Binary OPEralors: ... oie s ieie e e e e ases st st areasen s sesses st st ssans senses sessans esses sassnsees OO

55.1 Unary Operator OVerloading ... cuusaniimiaimmm s nss s i e i e s i

552 Overloading Binary OPeralor.o v s et e eeeet se e e st eses ses see st es e ees et s2msem st et 2asereseneet sansenesennes sanneneees OO
5.6 Operator Overloading using a Friend Function........ .o i i e e e e e e e sngiins seee e D3
5.7 Rules for Operator Overloading il Gtcoooi e ionin s sisn s amsss sns sesnamsss sns st stssss sisssn sabisss sns ses sianss sissesifagess svsor S o 39

5.8.1 Conversion from Basic t0 Class LyPe ...cco o v i s e s ses st ses sreses s esssseens ses ses se ses sfibihgoe oe oo SR o oe <S40 ove DD

5.8.2 Conversion from Class 10 Basic LYPeccci i ieimm i e ser s sssaies sesses s sionss snnssn ses ses ses ssssson SCoRi8E nesenss nnsnsasense D1

5.83 Conversion from One class type another class typc 98

5.9.1 Rules for Virual FUnCHONS ..o s siias ovas s sssonssnon s sno e oo son U4 ons st sssisss snanssesiiass sssasnssine 1Y
5.10 Pure Virtual FUnCion ... s s i 6 st 005 e s st s s s en s sen e 1O

6 Template and generic PROSramiming ... s e e i eessasihe e enees se sren sesses see eressesnssessesssnsssssessessesscsseeeeees LS
G2 CLasE TEIPIAIES. oo iiimnsrisninrimssisainsinsss s s st foir B v T 45 s P e Pinh e s s S P s v nain i LAV

6.2.1 Class template with multiple Parameter ... i oo s e s eseerser e e seesreeeeesersen senesnssessesennenes | 10

6.3.1 Function Template with multiple pasmeter ... o s s s s s s sninns 113

632 Overloading of Template:FUNCHOHE,5 ie s sereerere e se seeseseresies sessenesesis et st sesses sessenssesss st ens e sesssssensassseses 1 13
6.4 Non-type Template ArgINent. ... 388 i it s s i s sssrs L 1
6.5 Standard Template Libracy (STL) ..l i i s s s s s L1

6.5.2 Fentites af SEL il s niasisimsaiismass s imiss s LD

6.6.1 Bestets of Bggption Handlingocaisamnamuuniainnnsmnainimuasmisnimnainssaa 118

6.6.2 Exgeptis Handling MechaniSimt sssassassssssasssisssmassass sessss bassssassasssassassssass rsssssrssssinssssassassss 110

6.6.3 Exception generated by a functon ... s e s s L1

6.6.4 Multiple catch-statement wcoasrnsususiusiusi s nsmussmnasssaaly

6.6.6 RethroWing @XCCPELIOIL coe i e i e et se e e ctet e ses e ceeeremen ses cee2aeameeeeeet semen st eeeaneanseennesseneanseesnesenenseeceeen L 21

Object Oriented Programming in C++ | Unit-1

1 Thinking Object Oriented

1.1 Procedure-Oriented Programming

¥ Conventional Programming, using high level languages such as COBOL (Common Business Oriented Language),
FORTAN (Formula Translation) and C, is commonly called as procedural oriented programming {POP).

¥ POP basically consists of writing a list of instructions (or actions) for the computer to follow, and organizing these
instructions into groups known as function.

¥ Due to this POP is called Function Oriented Programming or Structured Programming.

¥ The list of instructions or actions is represented using flowchart or algorithms which helps to depict the flow of control
from one action to another.

¥ The technique of hierarchical decomposition has been used to specify the task to be completed for solving a problem.

¥ A typical program structure for procedural programming is shown in the figure below.

| Main Program |

| |

Funcrion-1		Finerion-2		Tuncticn=3
Funetion-1		Tunction-5		
Funciion-&		Function-7		lunction-8

Figure 1-1: Typical Structure of Procedure Oriented Programs

¥ In a multi-function program, many important data items are placed as globally. So that they may be accessed by all
the functions. Each function may have its own local data. The figare shown below shows the relationship of data and
function in a procedure-oriented program.

Cilohal Tiam o -r--"'"ll Cilohal Trata

BN e
T e Tl
-‘______,_.-——"'_ g, ‘__.f'r T —
Funetion-1 Fanetion-1 Fuanetion-1
Local Data Local Data Laocal Data

Figure 1-2: Relationship of data and functions in procedure programming

Some features of procedure-oriented programming are:
* Emphasis is on doing-things (Algorithms).
* Large programs are divided into smaller programs called as functions.
* Most of the functions'share global data.

* Data move openly around the system from function to function.
* Functions transformdata from one form to another.

Difficulties or Problems of POP
e Complexityin handling large programs

® - Data is undervalued
In“POP the focus is on development of function and flow of control, very little importance given to the data. The
important data items are placed as global so they can be accessed to all functions. The global data can be modified by
any of the function and this may result in accidental change by any functions.
Also such global data can be destroyed by any function. Further in large programs it is very difficult to identify what
data is used by which function. In case we need to revise any such data we need to revise all the functions that access
and this may result in problems.

e POP cannot model real world entities (person, place, thing, event etc.). POP is action oriented and don’t really
correspond to element of problem. It cannot depict the characteristics and function or entities in combined form.

e (Creation of new data type is difficult. Different data type like complex number s and two dimensional coordinate

cannot be easily represented by POP.
. ___|
Compiled by: - Naresh Prasad Das Page 1

Object Oriented Programming in C++ | Unit-1

1.2 Object Oriented Programming Paradigm
The object oriented approach is to remove some of the flows encountered in the procedure approach.
OOP treats data as critical element i.e. it doesn’t allow the data to move freely around the systems.
It ties the data closely with the related function there by protecting it from any accidental modification and deletion.
OOP allows decomposition of a problem into a number of entities called objects and then builds data and functions
around these objects.
The organization of data and functions in the object-oriented programs shown in the figure:
object A object B

i communication
Functions Tunctions

v

YV VY

hd

object C

S i

Functions

Trata

Figure 1-3: Organization of data & functions in OOP.

¥ The data of an object can be accessed only by the function associated with that object. However, functions of one
object can access the function of other objects.

Some features of object oriented programming are:
¢ Emphasis is on data rather than procedure;

* Programs are divided into what are called objects.

* Data structures are designed such that they characterize the objects.

¢ Functions that operate on the data of an object are tied together in the data structure.
s Data is hidden and cannot be accessed be external functions.

* Objects may communicate with gach other through functions.

¢ New data and functions can be easily added whenever necessary.

s Follows bottom-up appteach in‘program design.

¥ So, object oriented programming is-an approach that provides a way of modularizing programs by creating
partitioned memory area for both'data and function that can be used as templates for creating copies of such modules
on demand.

¥ Object oriented programming has other features also like inheritance, polymorphism, overloading, data obstruction
and encapsulation.

Example 1-1: Comparing Procedural Programming & Object Oriented Programming Paradigm
Problem: Write a program which implement a company, in which there are following departments:

(1) Quality (2) Production (3) Marketing
¥ If we solve the above program with the help of structured programming, we first divide the total department into
different functions. Suppose we need two functions Q1 and Q2 for Quality, three functions P1, P2 and P3 for
production, two functions for marketing M1 and M2 then the program structure look like:

Main Program

o e ¥] & Y T

Function Q1 Function Q2 Function P1 Function P2 Function P3 Function M1 Function M2

Compiled by: - Naresh Prasad Das Page 2

Object Oriented Programming in C++ | Unit-1

¥ If we solve the same problem which we solved with the help of structured programing, using object oriented
programming then the programming structure look like:

Nata

Cuality Chject

rroduction Dbpect

%+ Difference between C and C++

Data
|_ A1

L%

P keling Chject

C

C++

C is a structural or procedural programming
language.

C++ is an object oriented programming language

Emphasis is on procedure or steps to solve any
problem.

Emphasis is on objects rather than procedure.

Functions are the fundamental building blocks.

Objects are the fundamental building blocks.

In C, the data is not secured.

Data is hidden and can’t be accessed by external
functions

C follows top down approach

C++ follows bottom up approach

C uses scanf() and printf{) function for standard input
and output

C+4+ uses cin>> and cout<< for standard input and
output.

Variables must be defined at the beginning in the
function.

Variables can be defined anywhere in the function.

In C, namespace feature is absent.

In C++, namespace feature is present.

C is a middle level language.

C++ is a high level language.

Programs are divided into modules and functions

Programs are divided into classes and functions.

C doesn’t support exception handling directly. Can
be done by using some other functions

C++ supports exception handling. Done by using try
and catch block

C doesn’t support exception handling directly. Can
be done by using some other functions.

C++ supports exception handling. Done by using try
and catch block.

Features like function overloading and operator
overloading is not present

C++ supports function overloading and operator
overloading.

C program file is saved with .C extension.

C++ program file is saved with .CPP extension

. ___|
Compiled by: - Naresh Prasad Das

Page 3

Object Oriented Programming in C++ | Unit-1
L .]|

%+ Difference between POP (Procedural Oriented Programming) and OOP (Object Oriented

Programming)

ASPECTS

POP

oor

Divided Into

In POP, program is divided into small parts
called functions.

In OOP, program is divided into parts
called objects.

Importance In POP, Importance is not given to data but to | In OOP, Importance is given to the data
functions as well as sequence of actions to be | rather than procedures or functions
done. because it works as a real world.

Approach POP follows Top Down approach. OOP follows Bottom Up approach

Access Specifiers | POP does not have any access specifier OOP has access specifiers named Public,

Private, Protected, etc.

Data Moving In POP, Data can move freely from function to | In OOP, objects can move and
function in the system communicate with each other through

member functions.

Expansion To add new data and function in POP is not so | OOP provides an easy way to add new

casy.

data and function

Data Access

In POP, Most function uses Global data for
sharing that can be accessed freely from function
to function in the system.

In OOP, data cannot move easily from
function to function, it can be kept public
or private so we can control the access of
data

Data Hiding POP does not have any proper way for hiding [OOP provides Data Hiding so
data so it is less secure. provides more security.

Overloading In POP, Overloading is not possible. In OOP, overloading is possible in the
form of Function Overloading and
Operator Overloading.

Examples Example of POP are: C, VB, FORTRAN, Pascal. | Example of OOP are: C++. JAVA,
VB.NET, C#.NET.

1.2.1 Why OOP is Popular

¥ The concept of object oriented programming can-directly be mapped with real life problem. Even we can say that
the idea of OOP are taken from the real life. Now there are two questions.
¥* Questionl: How we can say that‘OOP conecepts are taken from real life?
In a real life the objects are:-Pen, Pencil, Car, book etc. These objects have two main things:
o Structure (or attribute)
o Behaviour (orNature)

Example A: For example the structure of pen consists: color of pen, Length of pen, the material by using which
body of pen is:made ete."Fhe behavior of pen means the job performed by pen that is writing.

ExampleB: Suppose the object is teacher then the structure of teacher consists: the height of teacher, Age of teacher
etc. The behavior of teacher consists: Teaching, Writing, Research etc.

Nowawe can'compare the real objects with object of OOP. We know that the object of OOP consists data and
functions. The structure of real life object can map with data member of object of OOP and behavior can map with

function.

I —
‘ Structiurs |

| Dehavior |

Hral hfe {Yhyrat

| Diata
- ‘ [

|.. | LT T TaT ‘

Ooject of OOF

By above analysis we can say that the object concept is taken from real life object. And in real life the objects
communicate with each other like in object oriented programming

Compiled by: - Naresh Prasad Das

Page 4

Object Oriented Programming in C++ | Unit-1

Suppose a teacher is teaching to student, then following objects interact with, each other

Teacher Student
Ohject Ohbject

4

Teacher teach students by using Board (i.e. Black Board). Means sometimes speak and sometimes write onto Board
for explaining topic.

By above analysis we can say that the interaction of object in OOP is also taken from real life object interaction.
So we can say that the object oriented programming concept are taken from real life object.

¥ Question2: If concepts are taken from real life then what is the benefit of thati.e. how this increase the popularity of
O0P?
We know that programming concepts are used for designing the program. and we know that program are designed
for solving problem. Problems are real life problems. That means program are designed for real life problems so if
we have a programming concept which is based on real life coneept thento design program by using that concept is
casy.
So we can say that designing program by OOP concept is easy: that is why OOP is more popular than other
programming concept.

Compiled by: - Naresh Prasad Das Page 5

Object Oriented Programming in C++ | Unit-1

1.3 A way of Viewing World Agent (Object)

To illustrate the major ideas in object-oriented programming, let us consider how we might go about handling a real-world
situation and then ask how we could make the computer more closely model the techniques employed. Suppose [wish to send
flowers to a friend who lives in a city many miles away. Let me call my friend Sally. Because of the distance, there is no
possibility of my picking the flowers and carrying them to her door myself. Nevertheless, sending her the flowers is an easy
enough task; I merely go down to my local florist (who happens to be named Flora), tell her the variety and quantity of flowers
I wish to send and give her Sally's address, and I can be assured the flowers will be delivered expediently and automatically.

Sally ——— Delivery Person Gardeners

. \
ul \

| \
|

\ Flower Arranger Grower

ME —— Flora \ 15 / /

a
___— Wholesaler

Sally's Florist

Figure 1-4: The community of agents helping me

Agents and Communities

In above example 1 solved my problem with help of agent (Object) florato deliver the flower. There will be community of
agents to complete a task. In above example Flora will communicate with sally’s florist, sally’s florist will arrange flower, the
arrangement of flower is hidden from me (data hiding/information hiding).

An object-oriented program is structured as a communityofinteracting agénts, called objects. Each object has a role to play.
Each object provides a service, or performs an action, that is used by ather immembers of the conmunity.

Message and Methods

1 will call flora for delivering flower to my friend sally. “After that there will be chain of message passing and actions taken by
various agents to deliver the flower as show in figure above.

Action is initiated in object-oriented programming by the transmission of a message to an agent (an object) responsible for
the action. The message encodes the request foran action and is accompanied by any additional infornnation (arguments)
needed ro cairy out the request. The receiver.is the object to whom the message is sent. If the receiver accepts the message, it

accepts the responsible to carry out'the indicated action. In response to a message, the receiver will perform some method to
satisfy the request. '

4+ Message versus Procedure Calls

In message passing, there is a designated receiver, and the interpretation the selection of a method to execute in
response to the message may vary with different receivers. Usually. the specific receiver for any given message will
not be known until mun time, so the determination of which method to invoke cannot be made until then.

Thus, we say there is late binding between the message (function or procedure name) and the code fragment (method)

used to respond to the message. This situation is contrast to the very early (compile-time or link-time) binding of name
to code fragment in conventional procedure calls.

Responsibilities

In above example, my request for action indicates only the desired outcome (flowers for my friend). Flora is free to pursue any
technique that achieves the desired objective i.e. to deliver flower to my friend and is not hampered by interference on my part.
A fundamental concept in object-oriemted programming is to describe behavior in terms of responsibilities.

Classes and Instances

In above scenario flora is florist we can use florist to represent the category (or class) of all florist. Which means Floma is
instance (object) of class florist.

All objects are instance of a class. The method invoked by an object in response to a message is determined by the class of the
receiver. All objects of a given class use the same method in response to similar messages.

Compiled by: - Naresh Prasad Das Page 6

Object Oriented Programming in C++ | Unit-1

Class Hierarchies Inheritance

In above example, | have more information about Flora-not necessarily because she is a florist but because she is a shopkeeper.
Since the category Florist is a more specialized form of the category Shopkeeper, any knowledge [have of Shopkeepers is also
true of Florists and hence of Flora. Flora is a Florist, but Florist is a specialized form of Shopkeeper. Furthermore, a Shopkeeper
is also a Human; so I know, for example, that Flora is probably bipedal. A Human is a Mammal, and a Mammal is an Animal,
and an Animal is a Material Object (therefore it has mass and weight).

bAzLerial Olyp=cis

Anifal Flint

rAammal LB Bttt
i BEet
D, Flatypus
|
J/ % --"'--___ Carnation
Shapkeopor St Memtist
=loris. Poer

[B Fliraboth PGS ER Y Fanf Sedide's Aaaera
Figure 1-5: A class hierarchy for various material objects.

Classes can be organized into a hierarchical inheritance structure. A child class {or subclass) will inherit attribures from a
parent class higher in the tree. An abstract parent class is a class (suchas Mammal) for which there are no direct instances;
it is used only to create subclasses.

% Summary of A way of Viewing World Agent

1. Everything is an object.

2. Computation is performed by objects communicating with each other, requesting that other objects perform actions.
Objects communicate by sending and receiving messages. A message is a request for action bundled with whatever
arguments may be necessary to complete the task.

3. Each object has its own memory, which'consists.of other objects.

Every object is an instance of a class. A class simply represents a grouping of similar objects, such as integers or lists.

5. The class is the repository for‘behavior-associated with an object. That is, all objects that are instances of the same
class can perform the same actions:

6. Classes are organized-into a singly rooted tree structure, called the inheritance hierarchy. Memory and behavior
associated with instances of a class are automatically available to any class associated with a descendant in this tree
structure.

=

1.4 Computation as Simulation

The Traditional Model

¥ In traditional view, computer is a data manager, following some pattern of instructions, wandering through memory,
pulling values out of various memory transforming them in some manner and pushing the results back into other
memory:

¥ The behavior of computer executing a program is a process-state or pigeon-hole model.

¥ By examining the values in the slots, one can determine the state of the machine or the results produced by a
computation.

¥ This model may be a more or less accurate picture of what takes place inside a computer.

¥* Real world problem solving is difficult in the traditional model.

The Object Oriented Model
¥ Never mention memory addresses, variables, assignments, or any of the conventional programming terms.
¥ Instead, we speak of objects, messages and responsibility for some action

Compiled by: - Naresh Prasad Das Page 7

Object Oriented Programming in C++ | Unit-1

>

»

This model is process of creating a host of helpers that forms a community and assists the programmer in the solution
of a problem (Like in flower example).

The view of programming as creating a universe is in many ways similar to s style of computer simulation called
“discrete even-driven simulation™

In a discrete event-driven simulation the user create computer models of the various elements of the simulation,
describes how they will interact with one another, and sets them moving.

Object oriented programming is also similar to event driven simulation.

1.5 Copying with Complexity

b

»

b
»

At carly stages of computer programming development all programs are written in assembly language by single
individual.

As program become more and more complex, programmer have difficulties in remembering all information needed to
develop and debug all software.

As program become more and more complex, even best programmer can’t perform the task by himself:

There will be group of programmer working together to solve complex problem.

The Nonlinear Behavior of Complexity

>
b

>

Y oY

As programming projects become larger, an interesting phenomenon was observed:

A task that would be take one programmer 2 months to perform could not be accomplished by two programmer
working for one month.

In Fred Brook’s memorable phrase, “the bearing of child takes nine months; no matter how many women are assigned
to the task”.

The reason for this nonlinear behavior was complexity in particular, the interconnection between software components
were complicated, and large amount of information had to be communicated among various members of programming
team.

Interconnectedness means the dependence of one portion of code on another section of the code.

Time is not directly related with number of man hours.

1.6 Abstraction Mechanism

YV Y Y

Y

The abstraction is the process of getting detail information according to the level of deep sight to the problem.

If you want to get detail information about the topic, you should go deeper to the problem.

Classes use theory of abstraction and defined list of abstract properties

Through the process of abstraction; a programimer hides all but the relevant data about an object in order to reduce
complexity and increase efficiency.

In the same way that abstraction sometimes works in art, the objects that remains is a representation of the original,
with unwanted detail omitted.

The resulting object itself can be referred to as an abstraction, meaning a named entity made up of selected attributes
and behavior (method) specify to particular usage of originating entity.

Abstraction is related to both encapsulation and data hiding.

Example: of adding complex number, considering three objects cl.c2, ¢3. C1 and ¢2 object is used to call input
function, ¢3 is use for adding datain c1 and ¢2 and ¢3 is also used for displaying output.

Consider Laptop computer, we view laptop as single unit but really laptop consists of input units (keyboard, touchpad)
outputunif (screen), processor unit (processor, motherboard) storage unit (RAM, HDD) etc.

|
Compiled by: - Maresh Prasad Das Page 8

Object Oriented Programming in C++ | Unit-2

2 Classes and Methods
2.1 Historical Background of C++
C++ is object oriented programming language. It was developed by Bjarne Stroustrup at Bell-Laboratories. Stroustrup
take the best features of simula67 and C, and designed a language which support object oriented programming features.
Therefore, C++ is an extension of C with a major addition of the class construct feature of Simula67. Since the class was a
major addition to the original C language, Stroustrup initially called the new language ‘C with classes’. However in 1983 the

name was changed to C++. The idea of C4++ comes from C increment operator ++, thereby suggesting that C4++ is an augmented
(incremented) version of C.

The most important facilities that C++ adds on to C are classes, inheritance, function overloading ‘and operator
overloading. These features enable creation of abstract data types, inherit propertics from existing data types. and support
polymorphism, thereby making C4++ a truly object-oriented language.

The object-oriented features in C++ allow programmers to build large program with clarity, extensibility and ease of
maintenance, incorporating the spirit and efficiency of C. The addition of new features has transformed Cfrom a language that
currently facilitates top-down, structured design, to one that provides bottom-up, object-oriented design.

2.2 A simple C++ Program

Example 2-1:

#include<iostream: finclude header file
using namespace std;
int main{)
{
cout<<"Hello World";
return 0;

}

% Output Operator
cout<< “Hello World™;

¥ The above statement print the string Hello world on to screen.

¥ cout (pronounced “c out”) is a predefined object that represent the standard output stream in C++.

¥ In above statement the operator << is called insertion or put to operator. It inserts the contents of the variable on its
right to the cout object. '

Screcn ..7| cout |4 T8 . | “Tlelle World™

Objoct Inscriion Variable
operator

%+ Input Operator
cin=>n;

¥::The above statement takes a value assign that value to n.

¥ Same like cout, cin (pronounced “c in”) is also predefined object in C++, cin represent standard input stream.

¥ The operator >> is known as extraction or get from operator. It extracts the value from the keyboard and assign it to
variable.

Keyboard cin ——(: = . —
Object Extraction Variable
operator

Compiled by: - Naresh Prasad Das Page 9

Object Oriented Programming in C++ | Unit-2

¥ Cascading of input and output operator is also possible.
¥ If suppose we want to read the value of variable nl. n2 and n3 then we can write statement
cin >>nl >>n2 >>n3;

This is equivalent to

cin >>nl;

cin >>n2;

cin >>n3;

¥ Same we can do with output operator also for example suppose we want to print the value of a and b then we can write
the statement like
cout << “a=*<<a<<“b=*<<b;
Above statement is equivalent to

cout <<"a=*;

cout << a;

cout <<h="*4

cout <<b;

%+ Directive
The two lines that begin the example 2.1 program are directive. The first is a preprocessor directive, and the second is a using
directive.

Preprocessor Directive
#include <iostreams>

¥ The first line of the program might look like a program statemérit, but it is not. It isn’t part of function body and doesn’t
end with a semicolon, as program statements must: Instead, it starts ' with a number sign (#).

¥ The program statement are instruction to the computer to do something, such as adding two numbers or printing a
sentence. A preprocessor directive, on the other hand, is an instruction to the compiler. A part of the compiler called
the preprocessor deals with these directive before it begins the real compilation process.

¥ The preprocessor directive #include tells the compilertoinsert another file into your source file. In effect. the #include
directive is replaced by the contents of the file indicated.

¥ The #include is only one of many preprocessor directives, all of which can be identified by the initial # sign.

¥ iostream is an example of header file'{sometimes called an include file). It’s concerned with basic input/foutput
operations, and contains declarations that are needed by the cout identifier and the << operator. Without these
declarations, the compiler won’t recognize cout and will think << is being used incormectly.

¥ There are many such includefiles. The newer standard C++ header files don’t have a file extension, but some older
header files, left overfrom the days of the C language, have the extension .h.

¥» We can add more than-one header file in the program, if necessary.

The using Directive
¥ A C++ program ¢an be divided into different namespaces. A namespaces is a part of the program in which certain
names are recognized, outside of the namespaces they are unknown.
¥ The directive

using namespace std;

Says that the program statements that follow are within the std namespace. Various program component such as cout
are declared within this namespace. If we didn’t use the using directive, we would need to add the std name to many program
clements. For example, the program of example 2.1 we’d need to say

std::cout << “Hello World™;

¥ To avoid adding std:: dozens of time in program we use the using directive instead.

|
Compiled by: - Maresh Prasad Das Page 10

Object Oriented Programming in C++ | Unit-2

Example 2-2: Following Program read two number and then print the sum of these two.

#include<iostream=>
#include<conio.h>
using namespace std;
int main()
{
int a.b.s;
cout<<"Enter First number:";
cin>>a;
cout<<"Enter Second number:";
cin>>b:
s=a+b:
cout<<"The sum of two numbers are:"<<s;
getch();
retum (;

QOutput:

FEnter First number:5
fEnter Second number:?
#The sum of two numbers are:zld

Note: If in cout we write the message within ** ** then that message is printed as it is onto screen, otherwise the
value of that variable is printed onto screen.

Example 2-3: Write s program which read a floating point number then print the integer and fractional part of that
number

#include<iostream=
#include<conio.h>
using namespace sid;
int main()
{
floatn, fpart;
int ipart;
cout<<"Enter a floating point number:";
cinz>n:
ipart=n;
fpart=n-ipart;
cout<<"The integer part of number is:"<<ipart<<endl:
cout<<"The fractional part of number is:"<<fpart;
getch();
retum (;
}
Output:
IEnter a floating point numberzis.24

Thc intcgcx part of numbex iz=15
fIThe fractional part of number is:B.24

Note: In above program endl is used in cout, endl transfer the cursor to new line i.e. the next statement is printed
from the next line. This is equivalent to *An™; in place of endl we can write *\n™ also.

Q. Write a program which read three numbers u, a, t and then calculate function s where s = u =t + % *q = t?

Compiled by: - Naresh Prasad Das Page 11

Object Oriented Programming in C++ | Unit-2

2.3 Review of Structure

>

231

232

A structure is a collection of simple variable. The variable in s structure can be of different types: Some can be int,
some can be float, and so on.

The data item of structure is called member of the structure.

The difference between array and structure is the element of an array has the same type while the element of structure
can be of different type.

For C++ programmers, structures are one of the two important building blocks in the understanding of objects and
classes. In fact, the syntax of a structure is almost identical to that of a class. The only difference being that in a class,
all members are private by default. But in a C++ structure, all members are public by default. In C, there is no concept
of public or private.

So by learning about structures we’ll be paving the way for an understanding of classes and objects.

Defining the Structure
The structure definition tells how the structure is organized: It specifies what member the structure will have
Syntax:
struct tag_name
{
data_type variablel;
data_type variablel;
I
The keyword struet introduces the structure definition. Next comes the structure name or tag. The declaration of the
structure members are enclosed in braces. A semicolon follows the closing brace, terminating the entire structure.

Example:
struct student
{
char name[50];
int roll;
char branch[20];

| H

Creating structure variable
We can also create structure variable at the time of declaration:
struct student

{

char name[50];

int roll;

char branch[20];
}sl.52,53;

We can create structure variable like following also
¥ ‘Structure declaration:

struct student
{

char name[50];
int roll;
char branch[20];
b
¥ Structure variable creation:
student s1,52,53;

Note: One of the aims of C++ is to make the syntax and operation of user-defined data types as similar as possible
to that of built-in data types. In C we need to include the keyword struct in structure type variable creation as in
struct student s1,52,53;. In C++ the keyword is not necessary.

. ___|
Compiled by: - Naresh Prasad Das Page 12

Object Oriented Programming in C++ | Unit-2

2.3.3 Accessing member of structure
* Any member of a structure can be accessed as:
Structure variable name . member name
¥ The structure member is written in three parts: the name of the structure variable, the dot operator which consisit
of a period (.), and the member name.
¥ Forexample: slroll = 325;

Example 2-4:

#include<iostream>

#include<conio.h>

using namespace std;

struct student

{
char name[50];
int roll;
char branch[20];

b

int main()

{
student s;
cout<<"Enter name of student:";
cin. get(s.name,50);
cout<<"Enter Roll number of student:";
cinz=s.roll;
cout<<"Enter branch of student:";
cin=>s.branch;
cout<<"Entered Information:"<<endl;
cout<<"Name:"<<s.name<<endl:
cout<<"Roll:"<<s.roll<<endl:
cout<<"Branch:"<<s.branch;
getch();
return (0

Output:

nter name of studentiram karna
Enter Roll number of student:3d25
fEnter branch of student:computer
Entered Informations:

iName -ran karna

¢ - (C structure can't contain functions means only data members are allowed, but structure in C++ can have both
functions and data members.

s struct keyword is necessary in C to create structure type variable, but itis redundant & not necessary in C++.

s Structure in C can't have static members, but C++ structure can have static members.

¢ Structure members can't be directly initialized inside the struct in C, but it is allowed in C++

Compiled by: - Naresh Prasad Das Page 13

Object Oriented Programming in C++ | Unit-2

2.4 Basic Concept of Object-Oriented Programming
¥ In object oriented programming data and functions are organized in one entity.
¥ It is necessary to understand some of the concepts used extensively in object-oriented programming. These include
¢ Objects and Classes
s Method
¢ Encapsulation
* Data abstraction
¢ [nheritance
s Polymorphism
* Dynamic binding
s Message passing

% Objects and Classes
¥* Classes is an entity in which data and functions (which operate these data) are organized.
¥ Object is a class variable. When a program is executed, the object interact by sending messages toone another.
¥ Object are the basic run-time entities in an object-oriented system. They may represent a person, a place, a table of
data or any item that the program has to handle.

¥ Programming problem is analyzed in terms of objects and the nature of communication beiwccn them.
¥ Program objects should be chosen such that they match closely with the real-world objects.
¥ The entire set of data and code of an object can be made a user-defined data-with the help of a classes.
¥ Once a class has been defined, we can create any number of objects belonging to that class.
¥ A classisthus a collection of objects of similar type. For example; mango, apple and orange are members of the class
fruit
Chject1 Oibyect?
Dalal 13atal
Dara2 Data2
§ Function i 1 Function
s _ Functiwn2
Mamber
of objzetl o A
" i
Drata
‘ancticn
Chject3

¥ If objectd wants to access function] then that access throws the objectl.
¥ The data and function inside a classes are known as member of that class.

% Method
¥ “An operation required for an object or entity when coded in a class is called method.
¥ Theoperation required for an object is defined in a class.
¥ Functions of class is referred as methods or member functions.
¥® Usually data members are declared private and methods as public in a class.

%+ Encapsulation
¥ The wrapping up of data and functions into a single unit (called class) is known as encapsulation.
¥ Data encapsulation is the most striking features of a class. The data is not accessible to the outside of class. Only the
function which are inside the class can access the data.
¥ The insulation of the data from direct access by the program is called data hiding or information hiding.

Compiled by: - Naresh Prasad Das Page 14

Object Oriented Programming in C++ | Unit-2

%+ Data abstraction

¥ Abstraction refers to the act of representing essential features without including the background details or explanations.
¥ Class use the concept of abstraction and are defined as alist of abstract data and functions to operate on these data.

¥ Classes encapsulate all the essential properties of the object that are to be created.

¥ Since the classes use the concept of data abstraction, they are known as Abstract Data Types (ADT).

++ Inheritance

¥ Inheritance is the process by which objects of one class acquire the properties of objects of another class.

¥ Inheritance is a method by using which we can create a new class by extending and enhancing existing class. The
existing class is called the base class and the new class is called derived class.
¥ Inheritance is very powerful features of oop.

¥ For example we have a class X which has following member: two functions F1 and F2 and three data d1. d2 and d3.

1

d

Pekle

Fl

Class X

Suppose after sometimes we want to add one function, F3 and data d4 in that class X. We can do this by designing the
class again but the main drawback of this is we have again to check the class X (test & debug). But in oop with the
help of inheritance we can do this. Drive a new class.Y from the base class X. In class Y add only function F3 and

data d4, because the class Y is inherited from the e¢lass'X. Therefore the member of class X are automatically copied
into class Y.

d4

F2
Class 3 Class Y
(Base Class) (Derived Class)

If we create an-object of class Y then in that object the member are d1, d2. d3, d4, F1, F2 and F3. But if we create an

object of class X, in that object the member are d1. d3, d3, F1 and F2. That means the base member are transformed
into derived class but not in reverse order.

% Polymorphism
¥ Polymorphism, a Greek term, means the ability to take more than one form.
¥ Using function in different ways, depending on what they are operating on is called the polymorphism. i.e. one thing

with several distinct forms.

¥ For example suppose we are writing a program, which calculates the area of circle, area of triangle, area of rectangle.

With the help of polymorphism we can give same name area to all the area functions. In other words function
overloading is called polymorphism.

We can overload the operator also that is known as operator overloading for example + operator is used to add. numeric
data (int or float). If we use same + operator for adding two objects, then this is known as operator overloading.

Compiled by: - Naresh Prasad Das Page 15

Object Oriented Programming in C++ | Unit-2

%+ Dynamic binding

b
»

Dynamic binding refers to linking a procedure call to the code that will be executed only at run time.
The code associated with the procedure is not known until the program is executed, which is also known as late
binding.

%+ Message Passing

>

An object-oriented program consists of a set of objects that communicate with each other. The process of programming
in an object-oriented language, therefore, involves the following basic steps:

o Creating classes that define objects and their behavior.

o Creating objects from class definitions, and

o Establishing communication among objects.
A message for an object is a request for execution of a procedure, and therefore will invoke a function (procedure) in
the receiving object that generates the desired result.
Message passing involves specifying the name of the object, the name of the function (message). and the information
to be sent
Example:

smployee salary(name);
Y
olpecl —— mlnmaiun
message

Objects have a life cycle. They can be created and destroyed. Comimunication with an object is feasible as long as it is
alive.

2.5 Specifying a class

>

®
b
b

A class is a way to bind the data and its associated functions together. It allows the data (and function) to be hidden,
if necessary, from external use.

When defining a class we are creating a new abstract data type that can be treated like any other built-in data type.
The data inside the class are called member data and the functions are called member function.

The binding of data and functions togetherinto a single class type variable is called encapsulation, which is one of the
benefit of object-oriented programming.

The general form of declaring ¢lass'is:

class class: name

t

access-specifierl: member_datal;
member_data2;

member_functionl;
access-specifier: member_data;

member_function;
b

In above declaration, class is keyword. class_name is any identifier name. The number of member data and member

function depends on the requirements. An object is an instance of a class i.e. variable of a class. The general form of declaring

an object is

class_name object_name;

. ___|
Compiled by: - Naresh Prasad Das Page 16

Object Oriented Programming in C++ | Unit-2

OR
class class_name
{
private:
variable_declaration;
function_declaration;
public:
variable_declaration;
function_declaration;
b

The class declaration is similar to a struect declaration. The keyword class specifies that what follows is an‘abstract data of
type class_name. The body of a class is enclosed within braces and terminated by a semicolon. The class body contains the
declaration of variables and functions. These functions and variables are collectively called class members. They are usually
grouped under section, namely private and public to denote which of the members are private and which of them are public.
The keyword private and public are known as visibility labels. Note that these keywords are followed by acolon.

Example 2-5:
#include<iostream:=>
#include<conio.h>
using namespace std;
class student
{
private:
char name[50];
int age;
int roll;
public:
void getdata()
{
cout<<"Enter name:";
cinz>name;
cout<<"Enter age:";
cin=>age;
cout<<"Enter roll:";
cinz>roll;
}
void showdata()
{
cout<<"Name:"<<name<<endl;
cout<<"Age:"<<age<<endl;
cout<<"Roll:"<<roll<<endl;

b

int main()

{
student s;
s.getdata(); . e ey
cout<<"Entered Information are"<<endl; 2 age 25
s.showdata();
getch();
retum (;

Compiled by: - Naresh Prasad Das Page 17

Object Oriented Programming in C++ | Unit-2

2.5.1 Access Specifiers (Visibility Labels)

¥ The access specifier tells about the visibility of member.

¥ The access restriction to the class members is specified by the labeled public, private, and protected sections within
the class body. The keywords public, private, and protected are called access specifiers.

¥ A class can have multiple public, protected, or private labeled sections. Each section remains in effect until either
another section label or the closing right brace of the class body is seen. The default access for members and classes
is private.

¥ Access specifier are followed by colon(1).

% Public
¥ The members defined in public section can be accessed anywhere from the program. This allows theclass to'expose
its data members and member function to other functions and objects.
When this public access specifier is used all the details of the data member and member function are visible:to other
class.
¥ Usually data members(i.e. variables) are not declared in this section
¥ If data members are declared in this section. Data hiding rule is violated in oop.

%+ Private
¥ A private member variable or function cannot be accessed. or even viewed from outside the class. Only the class and
friend functions can access private members.
¥ This allows a class to hide its member variables and member functions{rom other ¢lass objects and functions.
¥ Usually data member are declared in this section.
¥# If member function is declared in private other public function should ¢all that member function.

% Protected
¥ A protected member variable or function is very similar to a private member but it provided one additional benefit
that they can be accessed in child classes which are called derived classes.

2.5.2 Creating Objects
¥ A typical class declaration would look like:

class item
{
int number: /fvariable declaration
float cost; {fprivate by default
public:
void getdata(int a, float b); {/ffunction declaration using prototype

void showdata ();
b
¥ Remember that the declaration of item as shown above does not define any objects of item but only specifies what
they will contain. Once aclass has been declared, we can create variables of that type by using the class name.
¥ For example
item p; {fmemory for p is created
create a-variable p of type item. In C++, the class variables are known as objects. Therefore, p is called an object of
type item. ' We may also declare more than one object in one statement. Example
item p,q.r;
¥ Object can also be created when a class is defined by placing their names immediately after the closing brace, as we
do in'the case of structure.
* For Example
class item

{

tp.g.r:
Would create the objects p, g and r of type item.

|
Compiled by: - Maresh Prasad Das Page 18

Object Oriented Programming in C++ | Unit-2

2,53 Accessing class members
¥ Private member cannot access outside the class. Therefore the private data of a class can be accessed only by the
member functions of that class.
¥ The public member can be access outside the class like from main(). The format for calling a member function is:
Object-name.member-name;
If member is function then calling format is:
Object-name.function-name(argument);
That means the public member of a class can access through the object of that class. The calling procedure of a public
member function is same as calling procedure of function. Only difference is the object-name is also necessary in case
of member function.

¥ For example, the function call statement
p-getdata(50,250.65);

is valid and assigns the value 50 to number and 250.65 to cost of the object p by implementing the getdata() function.
Similarly, the statement
p. showdata();
would display the values of data members.

¥ Remember, a member function can be invoked only by using an object (of the same:class). The statement like
getdata(50,250.65);

has no meaning. Similarly, the statement
panumber = 50

is also illegal. Although p is an object of the type item to which number belongs, the number (declared
private) can be accessed only through a member function and not by the.object directly.

¥ A variable declared as public can be accessed by the'objects directly. For Example:

class xyz
{

int x;

int y;

Public:

int z;
b
Xyz p;
p.x =20 //Error, x is private
p.z = 50; {/QKk, z is public

2.54 Member Function

¥ The variable declared inside the class are known as data members and the functions are known as methods or member
funetions:
The operation required for an object is defined in a class.
Member function can be defined private or public sections, usually methods are declare in public section of class.
Member function can be defined in two ways

o Qutside the class definition

o Inside the class definition

Y ¥ Y

% Qutside the Class Definition
¥ Member function that are declared inside a class have to be defined separately outside the class.
¥ Their definition are very much like the normal functions. They should have a function header and a function body.
¥ An important difference between a member function and a normal function is that a member function incorporates a
membership ‘identity label” in the header. This ‘label’ tells the compiler which class the function belongs to.
¥ The general form of a member function definition is:

Compiled by: - Maresh Prasad Das Page 19

Object Oriented Programming in C++ | Unit-2

return-type class-name :: function-name (argument declaration)
Function body

/

* The membership label class-name:: tells the compiler that the function function-name belongs to the class class-
name. That is. the scope of the function is restricted to the class-name specified in header line. The symbol :: is called
the scope resolution operator.

Example 2-6:

#include<iostream=>
#include<conio.h>
using namespace sid;
class item

{
int number; {/fprivate by default
float cost; /fprivate by default
public:
void getdata(int a, float b);
void showdata();
b
void item::getdata(int a, float b) /f use membership label
{
number=a; {/lprivate variables
cost=b; /fdirectly used
}
void item::showdata()
{
cout<<"Number is"<<number<<endl;
cout<<"Cost is:"g<cost;
}
int main()
{
itemp; {fcreate object p
cout<<"Object p"<<endl;
p.getdata(50,250.65); ffeall member function
p-showdata();
item q; [/fcreate another object g
cout<<"\nobject gin":
q.getdata(100,365.75);
q.showdata();
getch(): fCost is:250.65
retum (; fobject g
EMumber is 168
} fCost is:365.75

++ Inside the class definition

¥ Another method of defining a member function is to replace the function declaration by the actual function definition
inside the class.
¥ When a function is defined inside a class, it is treated as an inline function.

Example 2-7:

#include<iostreams>
#include<conio.h>

using namespace std;
L |

Compiled by: - Naresh Prasad Das Page 20

Object Oriented Programming in C++ | Unit-2

255

»

>

class item
{
int number; {/private by default
float cost: {/private by default
public:
void getdata(int a, float b)
{
number=a;
cost=b;
}
void showdata()
{
cout<<"Number is:;"<<number<<endl;
cout<<"Cost is:"<<cost;
}
B
int main{)
{
item p; {fcreate object p
cout<<"Object p"<<endl:
p.getdata(50,250.65); {/call member function
p.showdata();
itemq; {/create another object g

cout<<"nobject g\n";
q.getdata(100,365.75);
g.showdata();

getch();

return 0;

|

Making an Quiside Function Inline
We can define a member function outside the class definition and still make it inline by just using the qualifier inline
in the header line of function definition.

Example:

class item
{

public:

void getdata(int a, float b); /fdeclaration

b
inlinevoid item::getdata(int a, float b) {/definition
{

number=a;

cost=b;

Private Member Functions

Although it is normal practice to place all the data items in a private section and all the functions in public. Some
situations may require certain functions to be hidden (like private data) from outside calls. We can place these functions
in the private section.

A private member function can only be called by another function that is a member of its class. Even an object cannot
invoke a private function using the dot operator.

Consider a class as defined below:

|
Compiled by: - Maresh Prasad Das Page 21

Object Oriented Programming in C++ | Unit-2

class sample

{
int m;
void read(); {/fprivate member function
public:
void update();
void write();
}sl;

If 51 is an object of sample, then
sl.read(); {/ is illegal, object cannot access private member
the function read() can be called by the function update() and function update() is called by object.

void sample::update()
{

read(); {/fsimple call, no object.used

}

Example 2-8:
#include<iostream:
#include<conio.h>
using namespace std;
class sample

{
int m:
void read()
{
cout<<"Value'of m="<<m<<endl;
}
public:
void write()
{
cout<<"Enter value of m:";
cin=>m;
}
void update()
{
read();
cout<<"Enter new value of m:";
cin==>m;
read();
}
b
int main()
{
sample s1;
sl.write(): Output:
sl.updatc{}; value of m:108
getch(); of m-18
: nev value of m:28
return (; of m=2
}

Compiled by: - Naresh Prasad Das Page 22

Object Oriented Programming in C++ | Unit-2

2,56 Arrays within a class
¥ The array can be used within a class as a member.
¥ For example
class xyz
{
int a[10].matrix[2][3];
public:

Example 2-9: Write a program to find the sum of diagonal elements of N x N matrix.

#include<iostream>
#include<conio.h>
using namespace std;
class matrix
{
int n,ij,al10][10],sum;
public:
void readmatrix();
void sumdiagonal();
b
void matrix::readmatrix()

{

cout<<"Enter order of square matrix:";
cin>>n;
cout<<"Enter the matrix:“<<endl:
for(i=0zi<n:i++)
{

for(j=0:j<nij++)

{

cin>>alil[jl;

}
}

void:matrix::sumdiagonal()
{
sum=0);
for(i=0:i<n:i++)
{
for(j=0:j<n:j++)
{
if(i=j)
{
sum+=a[i][j];
}
}
}
cout<<"Sum of diagonal element="<<sum;
}
int main()

{

|
Compiled by: - Maresh Prasad Das Page 23

Object Oriented Programming in C++ | Unit-2

matrix m; Output:
m.readmatrix(); ' inter order n_square matrix:2
m.sumdiagonal(); Enter thg mat s

getch(): £ 2

retum (: Sum of diagonal elements=%

2.5.7 Memory Allocation for Object

When we create the objects space for member data variable is allocated separately for each object but no. separate
space is allocated for member function, the space for member function are created only once when they are declared

as a part of class. Because all the objects belong to that class, therefor all use the same member function.
¥ For example:

class abc
{ The space lor ol obj2 and obj3 is as folbows
Member var'!ahlel 2 | Nember-variable| | | Wemmhear variahled | | Wembear varinhlat |
Member-variable2;
Member-variable3 H | Member-variable? | | Mimmber-variable2 | ‘ Mferaben vazable? |
public:
Member-functionl; | Member variables | | Membervariables | | Member variable3 |
Member-function2;
obil oby2 obi3
h
“arahar fitnetion” | | M her-finctinn? |
abe objl, obj2, obj3;

2.6 Array of Object

¥ Array is a collection of homogenous data items. Therefore we can create an array in which each data item is class type
such array is called array of objects.

¥ For example

class student

{
char name[50];
char branch[30];
int roll;

public;

void getdata();
void showdata();

I

student biodata[30];

biodata is an array of 30 elements each is student type i.e. biodata[0], biodata[1],biodata[29] all are object o

student class.

The accessing of public member is as

biodata[i]. getdata(); {fwhrere 1150 to 29
if we want to access getdata() for object biodata[2] the we will write
biodata[2].getdata();

Example 2-10: Write a program which reads the bio-data of n students and then prints.
#include<iostream>
#include<conio.h>
using namespace std;

Compiled by: - Naresh Prasad Das Page 24

Object Oriented Programming in C++ | Unit-2

class student
{
char name[50];
char address[40];
char phone[14];
char branch[30];
int roll;
public:
void getdata();
void showdata();
b
void student:getdata()
{
cout<<"Enter name:";
cin>>name;
cout<<"Enter address:";
cin>>address:
cout<<"Enter phone:";
cin>>phone;
cout<<"Enter branch:™;
cin>>branch;
cout<<"Enter Roll:";
cin>>roll:

}

void student::showdata()
{
cout<<"Name:"<=name<<endl;
cout<<"Address: "<<address<<endl;
cout<<"Phone Number:"<<phone<<endl:
cout<<"Branch:"<<branch<<endl;
cout<<"Roll number"<<roll<<endl;
}
int main()
{
student biodata[100];
int n,i;
cout<<"Enter number of student:;™;
cin>>n;
for(i=0;i<n;i++)
{
cout<<"\nEnter Bio-data of student "<<i+1<<endl;
biodata[i].getdata():
}
for(i=0;i<n:i++)
{
cout<<"nBio-Data of "<<i+1<<" Student is;"<<endl;
biodata[i].showdata();
}
getch();
return (0,

Compiled by: - Maresh Prasad Das Page 25

Object Oriented Programming in C++ | Unit-2

QOutput:

number of student:z2

Rin—data nf =tundent
namea > »am
addre ss skathmandu
hone = 7841234567
ranch: computer
Roll:-352

Biv—data uf sludent
name : hari
addre=s=zzlalitpner
phone 9808912345
branch:ielectronics

Roll: 458

in—Mata nf 1 Stundent i=s:
M = 1oam
Addre =5 : kal handa

Bio—Data of 2 Stuwdent 1s:
ame = hari
AddvesszTalitpur

hone Mumher»:=9808912345
[Dranch:electronics

[Roll number458

2.7 Ohjects as Function Arguments
¥ An entire object can be passed to a function. There are two concepts for passing an object to function
o Call by value
o Call by reference or call by address
¥ If we pass object value to function that is called call by valueini this ¢ase any change made to the object inside the
function do not affect the actual object.
¥ If we pass object as a call by reference or call by address, we passthe reference or address of the object. Therefore any
change made to the object inside the function will reflect in the actual object.
¥ The object which used as an argument when we call the function is known as actual object, and the object which is
used as an argument within the function header iscalled fonmnal object
Example 2-11: Write a program which reads two complex numbers and then calculate sum of these two.
#include<iostream>
#include<conio.h>
using namespace std;
class complex

{
float realp;
float imagp;
public:

void getdata()

{
cout<<"Enter real part:";
cin>>realp;
cout<<"Enter Imaginary part:";
cin>>imagp;

}

void output()

{
cout<<realp<<"+ i"<<imagp<<endl;

}

void sum(complex c1, complex ¢2)

{
realp=cl.realp+c2.realp;
imagp=cl.imagp+c2.imagp;

}

b

Compiled by: - Naresh Prasad Das Page 26

Object Oriented Programming in C++ | Unit-2

int main()

{
complex x.y.z;
cout<<"Enter first complex number:"<<endl:
x.getdata():
cout<<"Enter second complex number:"<<endl;
y.getdata():

Z.sumix.y);

cout<<"First number:"; Output:

x.output(); | firset complex number:

cout<<"Second number:"; | real part:2 ;

Imaginary part:3

y.output(); : gecond complex numbep:
" - 1 real part:4

cout<<"Sum of two nunbers;”; _ Imaginary part:is

z.output(); IFi nunber:2+ 13

etch(): econd number=4+ 16

g 5 Bum of two nunhers:ib+ i9

retum (;

}
¥ Inexample 2-11, the member function sum() is called by object z and we have passed two argument x and y both are

object. When the statement z.sum(x, y); is executed the value of actual object x is copied to formal object ¢l and
actual object y is copied to formal object ¢2 and after that body of function:sum(yis executed. Inside the body of sum()
there are following statements:

realp=cl.realp+c2.realp;

imagp=cl.imagp+c2.imagp;
By the first statement the realp of ¢l (i.e. the realp of object x) is added with realp of ¢2 (i.e. the realp of object y)
and assigned to realp variable. This realp is member of object z because the function sum() is called by object z.
Similarly imagp is calculate by second statement.

2.8 Returning object from function
* A function cannot only receive objects as arguments but also can return them.

Example 2-12:

#include<iostreams
#include<conio.h>
using namespace std;
class complex
{
float realp;
float imagp;

public:

void getdata()

{
cout<<"Enter real part:";
cin>>realp;
cout<<"Enter Imaginary part:";
cin=>imagp;

}

void output()

{
cout<<realp<<"+ i"<<imagp<<endl;

}

complex sum(complex cl)

{

complex temp;
temp.realp=cl.realp+realp;
L |

Compiled by: - Naresh Prasad Das Page 27

Object Oriented Programming in C++ | Unit-2

temp.imagp=cl.imagp+imagp:

return (temp); {freturning an object
}
¥
int main)
{
complex x.y.z:
cout<<"Enter first complex number:"<<endl;
x.getdata();
cout<<"Enter second complex number:"<<endl;
y.getdata():
Z=y.sum(x);
cout<<"First number:"; Output:
X'Ompuﬂtu; W nter first complex number:
cout<<"Second number:"; real pavt:Z
L Imaginary part:3
y.output(), ; .
:) W + second complex number:
cout<<"Sum of two nunbers:"; ~ real part:4d
; | Imaginary part:6
z.outpuii(); iF i nunherz2+ i3
getch(); econd numherid+ ih
retum (: fSum of two nunhers 6+ i%
}

* In above program the function sum is called by object y therefore inside the function sum() in statement
temp.realp=cl.realp+realp;
realp is member of v.
¥ cl.realp is actually x.realp because x is copied to ¢l at the time of calling by the statement:
Z=Y.sumix);
S0,
temp.realp=cl.realp+realp;
means realp of x is added with realp of yand assigned to realp of temp.
¥ Similarly
temp.imagp=cl.imagp+imagp;
means the imagp of x is added with imagp of y and assigned to imagp of temp.
¥ By
return(temp);
statement object temp is returned to main and copied to z because we are assigning y.sum(x) to z in main program by
the calling statement
Z=y.sumi(x);

2.9 Static Member of a Class

¥ The member function of a class can be made static (data member and function member both).

2.9.1 Static data member
*A data member of a class can be qualified as static. The properties of a static member variable are similar to that of a
C'static variable.
¥ Static variables are normally used to maintain values common to the entire class.
¥ A static member variable has certain special characteristics. These are:
o Itisinitialized to zero when the first object of its class is created. No other initialization is permitted.
o Only one copy of that member is created for the entire class and is shared by all the objects of that class.
o Itis visible only within the class, but its lifetime is the entire program.
¥ The static variable are declared as follows:
class item

{

static int count;
|

Compiled by: - Naresh Prasad Das Page 28

Object Oriented Programming in C++ | Unit-2

public:

b
¥* The type and scope of each static member variable must be defined outside the class definition. This is necessary
because the static data member are stored separately rather than as a part of an object. Since they are associated with
the class itself rather than any class object, they are also known as class variables.
¥ For example for above class item, count is defined as
int item::count;
or
int item::count = 10;
* If we write, int item::count; then count is automatically assigned to zero.
¥ But by statement int item::count = 10; count is initialized 10.

Example 2-13:

#include<iostream=
#include<conio.h>
using namespace std;
class item
{
static int count;
intn;
public:
void getdata(int a)
{
n=a;
count++;
}
void showcount()
{

cout<<"Count="<<count<<endl;

b
int item::count: //definition of static data memebr
int main()

{

itent x.y.z; /fcount is initialized to zero
x.showcount();

yv.showcount():
z.showcount();
x.getdata(100);
y.getdata(200);
z.getdata(300),
cout<<"After reading data"<<endl;
x.showcount();
y.showcount();
z.showcount();
getch();

return (0

I

In above example count is static variable, this is initialized zero when the objects are created. The variable count is
increment whenever the getdata() function is called. Since the getdata() function called three times by object x, ¥

Compiled by: - Naresh Prasad Das Page 29

Object Oriented Programming in C++ | Unit-2

and z, the variable count is incremented three times. Because there is only one copy of count shared by all the three
objects.

2.9.2 Static member function
¥ Like static member variable, we can also have static member functions. A member function that is declared static has
the following properties:
o A static function can have access to only other static members (functions or variables) declared in the same
class.
o A static member function can be called using the class-name (instead of its object) as follows:
class-name :: function-name;

Example 2-14:

#include<iostream>
#include<conio.h>
using namespace std;

class test
{
int code;
static int count; /fstatic member variable
public:
void setcode()
{
code=++count;
}
void showcode()
{
cout<<"object number;"<<code<<endl;
}
static void showcount() //static member function
{
cout<<"Count;"<<count<<endl;
}
b
int test::count;
int main{)
{
test tFi2;

tl.seteode();
t2.setcodet);
test::showcount(); ffaccessing static function
test13;
t3.setcode();
test::showcount();
t1.showcode();
t2.showcode();
t3.showcode();

'.:-- number:1
getch(); hject numbhep:2
return 0; i hject number:3

¥ Remember, the following function definition will not work
static void showcount()
{

cout<<code; Heode is not static

}

Compiled by: - Naresh Prasad Das Page 30

Object Oriented Programming in C++ | Unit-2

2.10 const Member function
¥ If a member function does not alter any data in the class, then we may declare it as a const member function.
¥ The compiler will generate an error message if const member function try to alter the data value.
¥ If we write the body of function outside then qualifier const is appended in both declaration and definition.

Example 2-15:
#include<iostream:=
#include<conio.h>
using namespace std;
class sample

{
int data;
public:
void assign()
{
data=20;
}
void changedata() const
{
data=40; /[Error because changedata() is const member function
}
void showdata() const
{
cout<<"Data="<<data<<endl;
}
b
int main()
{
sample s:
s.assign();
s.changedata();
s.showdatal);
getch();
return (0

I

¥ If we pass object as constant argument to a function then function cannot modify these arguments, if modify compiler
give error message.

Example 2-16:

#include<iostream:> void showdataf)
#include<conio.h> {
using namespace std; cout<<"Data="<<data<<endl;
class sample 1
{ b
int data; int main()
public: {
void assign() sample x,y.z;
{ x.assign();
data=20; y.assign();
} Zsum(x.y);
void sum(sample const &a, sample const &b) z.showdata();
{ getch():
data=a.data+b.data: return (;
} }

Compiled by: - Maresh Prasad Das Page 31

Object Oriented Programming in C++ | Unit-2

2.11 Friend function

¥ Weknow that private member of a class cannot be accessed from outside the class i.e. a non-member function cannot
access to the private data of a class. But may be in some situation one class wants to access private data of second
class and second wants to access private data of first class, or may be an outside function wants to access the private
data of a class. Then for solving these situations in C++ there is a concept that is called friend function.
If an outside function can access the private data of a class that is called friendly to class.
To make an outside function friendly to a class, we have to declare this function as a friend function.
Declaration of friend function need keyword friend but in definition keyword friend is not necessary.
The friend function declares as follows:

class class-name

{

YV WY

public:

friend return-type function-name(arg);
}
¥ The body of function is written outside the class (i.e. the definition of function is written uutsidc the class).
return-type function-name(arg)
{
Body of function
}
* A friend function possesses certain special characteristics:
o Itisnotin the scope of the class to which it has been declared as friend.
o Since it is not in the scope of the class, it cannot be called using the object of that class.
o It can be invoked like a normal function without the help:of any object.
o Unlike member function, it cannot access the member names directly and has to use object name and dot
membership operator with each member name.
It can be declared either in the public or the private part of a class without affecting its meaning.
o Usually, it has the objects as arguments.

o

Example 2-17:
#include<iostream=>
#include<conio.h>
using namespace std;
class sample
{
int a.b;
public:
void getdata()
{
cout<<"Enter value of a:";
cin>>a;
cout<<"Enter value of b:";
cin>>b;
}
friend float mean(sample s);
b
float mean(sample s)
{
float temp;
temp=(s.a+s.b)/2.0;
retum temp;

}

|
Compiled by: - Maresh Prasad Das Page 32

Object Oriented Programming in C++ | Unit-2

int main()

{
sample x;
float r;
x.getdata():
r=mean(x); Output:
cout<<"Mean Value="<<r; S :
ho): Fnter value of a:t4
getch(); Enter value of h:5
retum 0 Mean Ualue=4_.5

}
¥ Note that we can make a friend function which is friend of two different classes by declaring ‘that into both
classes, and body of function is written outside the both classes.

Example 2-18: Swapping Private Data of Classes

#include<iostream>
#include<conio.h>
using namespace std;
class sample2; ffforward declaration
class samplel
{
int valuel;
public:
void getdata(int a)

{

valuel=a;

}

void showdata()
{
cout<<"¥aluel="<<valuel <<endl;
}
friend void swap(sample 1 &x, sample2 &y);
b
class sample2
{
int value2;
public:
void getdata(int a)
{
value2=a;
}
void showdata()
{
cout<<"Value2="<<value2<<endl;
}
friend void swap(samplel &x, sample2 &y);
b
void swap(sample!l &x, sample2 &y)
{
int temp;
temp=x.valuel;
x.valuel=y.value2;
y.valueZ=temp;

!

Compiled by: - Naresh Prasad Das Page 33

Object Oriented Programming in C++ | Unit-2

>

Y #

int main()
{
samplel sl;
sample2 s2;
s1.getdata(200);
s2.getdata(500);
cout<<"Values before swap:"<<endl;
s1.showdata();
52.showdata();
swap(s1.52); /Iswapping
cout<<"Values after swap:"<<endl:
s1.showdata();
s2.showdata();
getch();
return (;

|

In above program class sample2 is declared before class samplel but the body of class sample2 is written after class
samplel, this is necessary because within friend function we are using argument which is object of class sample2, so
compiler must know that class sample2 exist. This type of declaration is called forward declaration.

Note:

Member function of one class can be friend functions of another class: In such'cases, they are defined using the scope
resolution operator as shown below:

class X

{

int fun1(); fmemberfunction of "X

b
class Y

{

friend int X::funl(); fffunl of X is friend of Y

b

2.12 Friend class

»

We can declared a class as a friend of another class. A fiend class can use all the data member of a class for which it

is friend. For example
class B
class A

In this declaration class B is declared
as a friend as of class A. That’s why
{ class B can use all the members of
class A including private member

friend B;

Example 2-19:

#include<iostream:=
#include<conio.h>
using namespace std;

class B; //forward declaration
class A
{
int x,y:
public:

. ___|
Compiled by: - Naresh Prasad Das Page 34

Object Oriented Programming in C++ | Unit-2

void getdata()

{
cout<<"Enter x and y:"<<endl;
cin>>x>>y;
}
friend B;
b
class B
{
int z;
public:
void getdata()
{
cout<<"Enter z:";
cin>>z;
}
int sum(A t);
b
int B:zsum(A t)
{
int s;
s=tX+HL.y+Z;
return (s);
}
int main()
{
Ap:
B q;
p.getdata(); Output:
Geidetal); [Enter x and [TE
cout<<"Sum of x.y and z is="<<g.sum(p); g
getch(); Enter =:4
return (; Sum of x.y and z i
}

2.13 Inline function

¥ When function is called; it takes a lot of extra time in executing a series of instructions for tasks such as jumping to
the function, saving register; pushing arguments into the stack, and returning to the calling function. When a function
is small, a substantial percentage of execution time may be spent in such overheads.

¥ One solution to this problem is to use macro definitions, popularly known as macros. Preprocessor macros are popular
in C. The major drawback with macros is that they are not really functions and therefore, the usual error checking does
not occur during compilation.

¥ Toeliminate the cost of calls to small functions, C++ proposes a new feature called inline function.

#®: An inline-Tunction is a function that is expanded in line when it is invoked. That is, the compiler replace the function
call.with the corresponding function code.

¥ Although expanding function calls in line can produce faster run times, it can also result in larger code size because of
duplicate code. For this reason, it is best to inline only very small functions.

¥ Declaration of inline function:

inline return-type function-name (argument list)

{
Body of the function

}

. ___|
Compiled by: - Naresh Prasad Das Page 35

Object Oriented Programming in C++ | Unit-2

Example 2-20:
#include<iostream:=
#include<conio.h>
using namespace std;
inline int max(int a, int b)

{

return (a>b)7a:b;

I

int main()

{
int x,y:
cout<<"Enter x and y:"<<endl; Output:
cmb)x?)y;. _— ﬁnter x and y:
cout<<"Maximum is:"<<max(x,y):

. 7

gctch{}, Mascimum ig:?7
return (;

I
2.14 Reference Variable
¥* Reference operator (&) is used to define referencing variable
¥ Reference variable prepares an alternative name (alias name) for previously defined variable
¥ Syntax of referencing variable
<return-type> &reference-variable =variable;

¥ For Example

int x=5;

Value of x is 5 and after initialization y also becomes 5
int &y=x;

¥ Principles for declaring reference variable

o Reference variable should be initialized

o Reference variable should be referenced only to one variable
o A variable can have more than one reference

o Array reference not allowed

Example 2-21:
#tinclude<iostrean>
#tinclude<conio.h>
using namespace std;
void addgracemarks(float &); /Function declaration with reference argument
int main()

{

float marks;
cout<<"Enter Marks:":
cinz>marks;

addgracemarks(marks); QOutput:

cout<<"Final marks:"<<marks; Enter Marks ! 72
getch(); Final marks:?77?
return (;

!

void addgracemarks(float &m)

{

m+=5;

Compiled by: - Naresh Prasad Das Page 36

Object Oriented Programming in C++ | Unit-2

2.15 Default argument

¥ When declaring a function, we can specify a default value for each parameter. This value will be used if the
corresponding argument is left blank when calling to the function. To do that, we simply have to use the assignment
operator and a value for the arguments in the function declaration. If a value for that parameter is not passed when the
function is called, the default value is used, but if a value is specified, this default value is ignored and the passed value
is used instead.

¥ Itis used mainly in function call whose parameters are always same.

® One important point to note is that the trailing argument can have default values. That is the default argument must
add from right to left. We cannot provide a default value to a particular argument in the middle or first of an argument
list.

¥ For example:

float add (inta, inth=2,intc =95); /fThis is legal because trailing argument is default.
int add (int a =6, int b); /l This is illegal because trailing argument is-not default
int add (int a, intb =5, int ¢); /I This is illegal because trailing argument is not default
int add (inta=35,intb, intc = 6); /l This is illegal because middle argument is not default
int add (inta=35,inth=6,intc="7); /[This is legal because the argument are default from right to left
Example 2-22:
#include<iostream> int add(int a, int b, int ¢)
#include<conio.h> {
using namespace std: return (a+b+c);
int add(int a=5, int b=6, int c=7); }
int main{)
{
int x,y.z;
cout<<"Enter x, y and z:"; QOutput:

Cins>X>>ys57,

Enter x. d z:18
cout<<"Sum="<<add(x,y,z)<<endl: nter x. Yy an

Sum=68

cout<<"Sum="<<add(x.y)<<endl: Sum=37
cout<<"Sum="<<add(x)<<endl; e
cout<<"Sum="<<add()<<endl; |
getch();

return ()

i

2.16 State and Behavior of Object
%+ State
¥ An objects state is defined by the attributes (i.e. data members or variables) of the object
¥ In OOP state is defined as data members
¥ Itisdetermined by the values of its attributes
¥ What the gbjects have, Example: Student have a first name, last name, age, etc...

% Behavior

An objects behavior is defined by the methods or action (i.e. Member functions) of the object
In QOP behaviors are defined as member function

It determines the actions of an object

‘What the objects do, Example Student attend a course “"OOP”, “C programming” etc...
Example: Consider Lamp as an Object

Its states are on/off and behavior are turn on/ tum of

2.17 Responsibility of Object
An object must contain the data (attributes) and code (methods) necessary to perform any and all services that are required by
the object. This means that the object must have the capability to perform required services itself or at least know how to find

and invoke these services.
|

Compiled by: - Naresh Prasad Das Page 37

YV VWYY

Object Oriented Programming in C++ | Unit-3

3 Message, Instance and Initialization
3.1 Message Passing

Message is piece of communication (Exchange of data/information between sender and receiver)

In OOP object communicate with help of message passing.

Data is transferred from one object to another using message

Execution of member function is response guaranteed due to receipt of message

An object-oriented program consists of a set of objects that communicate with each other. The process of programming

in an object-oriented language, therefore, involves the following basic steps:
o Creating classes that define objects and their behavior.
o Creating objects from class definitions, and
o Establishing communication among objects.

¥ Objects communicate with one another by sending and receiving information much the same way as people pass
message to one another. The concept of message passing makes it easier to talk about building systems that directly
model or simulate their real-world counterparts. :

® A message for an object is a request for execution of a procedure, and therefore will invoke a funetion (procedure) in
the receiving object that generates the desired result.

* Message passing involves specifying the name of the object, the name of the function (message) and the information
to be sent.

¥ Message passing syntax using object s

YV VWYY

» s..get{jf.::la(x‘)

N,
!

Object N Informatien/Data
gt
Dot Operator Message

Example 3-1: Example of message passing

#include<iostream:=>
#include<conio.h>
using namespace std;
class student

{
int roll;
public:
void getdata(int x)
{
roll=x:
}
void display()
{
cout<<"Roll number="<<roll;
}
b
int main{)
{
student s;
s.getdata(325); /lobject s passing message
s.display(); /fobject s passing message
getch();
retum (;

Compiled by: - Naresh Prasad Das Page 38

Object Oriented Programming in C++ | Unit-3

3.2 Constructor

A constructor is a special member function which initializes the objects of its class. It is called special because its name is
same as that of the class name. The constructor is automatically executed whenever an object is created. Thus, a constructor
helps to initialize the objects without making a separates call to a member function. It is called constructor because it constructs
values of data members of a class.

Characteristics of constructor
o Constructor has same name as that of its class name.
It should be declared in public section of the class.
It is invoked automatically when objects are created.
It cannot return any value because it does not have a retum type even void.
Like other C++ functions, they can have default arguments.
It cannot be a virtual function and we cannot refer to its address.
It cannot be inherited, though a derived class can call the base class constructor
An object with a constructor (or destructor) cannot be used as a member of a union.
It makes implicit call to operators new and delete when memory allocation is required.

0000000

%+ Default Constructors (Constructor without argument)
* A constructor that accepts no arguments (parameters) is called the default constructor.

Example 3-2:
#include<iostream>
#include<conio.h>
using namespace std;
class sample

{
int a.b;
public:
sample() [fdefault constructor
{
a=10;
b=20);
}
int sumf)
{
returni(a+b);
}
b
int main()
{
sample s: lfconstructor called
cout<<"Output is:"<<s.sum();
getch();
return

I

¥ Inabove example sample is class, the constructor is

sample()

{
a=10;
b=20;

}

When we create the object of above class this is automatically called and therefore 10 is assigned to a, 20 is assigned
to b. In the body of constructor we can write any statement comments also.

¥ The body of constructor can also be written outside the class like other member function.

¥ For example:

Compiled by: - Maresh Prasad Das Page 39

Object Oriented Programming in C++ | Unit-3

#include<iostream>
#include<conio.h>
using namespace std;
class sample
{
int a,b;
public:
sample();
int sumf);

i;mplc::samplc{)
{

a=10;

b=20;
}

int sample::sum()

{
return (a+h);
}
int main()
{
sample s; fconstructor ealled
cout<<"Output is:"<<s.sum();
getch();
retum (;

}

% Constructor with argument (Parameterized Constructor)
¥ It is possible to pass one or more arguments to a'¢onstructor function. Simply add the appropriate parameters to the
constructor function’s declaration and definition. Then, when we declare an object. specify the arguments.
» When argument are used in constructor they are known as parameterized constructor.
¥ We can use argument in constructor as follows:

class sample
{
int a;
public:
sample(int x) {fconstructor with argument
{
a=Xx;
}
void display()
{
cout<<"Value of a="<<a;
}
b
¥ The object of such type of class is created as follows:
sample s1(20) //By calling the constructor implicitly
or
sample 52 = sample(20) /By calling the constructor explicitly

Example 3-3:
#include<iostream:

Compiled by: - Maresh Prasad Das Page 40

Object Oriented Programming in C++ | Unit-3

#include<conio.h>
using namespace std;
class sample
{
int a,b;
public:
sample(int x, int y)
{
a=x;
b=y:
}

int sum()

{
cout<<a+b<<endl:
}
b
int main()
{
sample s1(10.20); /implicit call
cout<<"sum of object sl is:";
sl.sum();
sample s2=sample(30,20); Hlexplicit call
cout<<"Sum of object 52 is:";
s2.sumf();
getch();
return (0
}
Example 3-4: Write a program which print the object number whenever we create an object
#include<iostream>
#include<conio.h>
using namespace std;
class counter
{

static int count:

public:
counter()
{
count++;
cout<<"Object number is:"<<count<<endl;
}
3
int coutter: :count;
int'main()
f
cout<<"We are creating cl object:"<<endl; Output:
counter cl; creating cl chject:
cout<<"We are creating c2 object:"<<endl; number is:l .
creating ¢2 object:
counter c2; numbher is:3
getch();
return
}

3.2.1 Multiple Constructor (Constructor Overloading)
¥ Like function Overloading Constructors also can be overloaded.
¥ Inone class it is possible to declare more than one constructors

Compiled by: - Naresh Prasad Das Page 41

Object Oriented Programming in C++ | Unit-3

Class contains more than one constructors, this is called constructor overloading.
All constructor have same name of class. But contains different number of arguments
Depending upon the arguments number, compiler executes appropriate constructor.
For example:

class sample

{

YV Y Y

int a.b.c;
public:
sample()
{
a=0: b= c=0:;
}
sample(int x, int y)
{
a=x; b=y; =0;
}
sample(int x, int y, int z)
{
a=x; b=y; c=z;
}
b
In above example, we have declared three constructors:in class sample. The first constructor receives no
argument, second receives two arguments and third receives three arguments.
We can create three different types of objects for above class sample like
1. sample sl;
2. sample s2(10, 20);
3. sample s3(5, 6,7);
Here, object sl automatically invokes the“constructor which has no argument so, a, b and ¢ of object sl are
initialized by value zero (0).
In object s2, this automatically invekes the constructor which has two arguments, so the value of a, b and ¢
are 10, 20, 0.
In object s3. this automatically invokes the-constructor which has three arguments, so the value of a, b and ¢
are 3.6, 7. 4
¥ Thus, more than one constructor is possible in a class. We know that sharing the same name by two or more functions
is called function overloading. Similarly, when more than one constructor is defined in a class, this is known as
constructor overloading
Example 3-5: Write a Program which calculates the subtraction of two complex numbers: a and b, when a = 3+i5 and b=4+i4
#include<iostream>
#include<conio.hz
using namespace std;
class complex

{
float realp,imagp;
public:
complex(}{ } /fconstructor no argument
complex(float x) /fconstructor one argument
{
realp=x;
imagp=x;

I

complex(float x, float y)//constructor two argument

{
realp=x;
imagp=y:

Compiled by: - Maresh Prasad Das Page 42

Object Oriented Programming in C++ | Unit-3

I

void sub(complex cl. complex ¢2)

{
realp=cl.realp-c2.realp;
imagp=cl.imagp-c2.imagp;
}
void display()
{

cout<<realp<<"+ "<<imagp<<end!;
}
b
int main()
{
complex a(3,5);
complex b(4):
complex c;
c.sub{a,b);
cout<<"First number 1s;";
a.display();
cout<<"Second number is:";
b.display(): Output:
cout<<"Result:": ' :
c.dispchlay();
get ();
return (;

JFirct number is:3+ i5
ECecond number is:'44+ id
Hesult:-1+ il

}
3.3 Copy Constructor

¥ Copy of constructor are used to copy one object to other one.
¥ The constructor which pass reference of gbject as argument to constructor.
* All copy constructor required one object argument:
¥ The general declaration for copy constructor is:
class sample

{
int a.b;
public:
samplefy| } /lconstructor
sample(sample & s1) {/fcopy constructor
{
a=sl.a;
b=sl.b:

}
b
¥ - We cantcreate object for above as follows:
1. sample sl;
2. sample s2(s1);
or
sample s2 =s1;
¥ The statement sample s1; calls the no argument constructor. While the statement sample s2(s1); calls the copy
constructor. The statement sample 52 = s1 also called copy constructor.
¥ Note the header of copy constructor is written as
class-name (class-name & object-ref)

Example 3-6: Write a program which reads a complex number, copy that into another. Use copy constructor for writing
program.

Compiled by: - Naresh Prasad Das Page 43

Object Oriented Programming in C++ | Unit-3

#include<iostream>
#include<conio.h>
using namespace std;
class complex
{
float realp.imagp;
public:
complex(float x, float y)//constructor two argument
{
realp=x;
imagp=y:
}
complex(complex & cl)ffcopy constructor
{
realp=cl.realp;
imagp=c1.imagp;
}
void display()
{
cout<<realp<<"+ i"<<imagp<<endl;
}
b
int main()
{
complex a(3.5); Hfobject a is created and initialized
complex b(a); {fcopy constructor called
complex c=a; {fcopy constructor called again
cout<<"First number is;":
a.display();
cout<<"Second number is;";
b.display():
coutg="Third number is:";
c.displavi}; Output:
gCtCh(]; 1"31: I'Il.lE:l" ‘ :

returm.(; Fecond number is:3+ iS5
pThird number is:z3+ iS5

}

4 Note: The above:constructor is called user defined copy constructor. Actually we can classify the copy constructor
into three categories:
¢ User defined copy constructor
s . Default copy constructor
¢ Hybrid copy constructor

%+ Default copy constructor
A copy constructor is a special type of constructor by using which we can initialize the data members of newly created object
by existingobject. The compiler provides a default copy constructor. The syntax of calling a copy constructor is:
complex c2(cl);
where complex is name of class, ¢2 is new object and ¢l is existing object.

Example 3-7: Write a program which creates a class for complex number, and by using default copy constructor initialize an
object of class.

#include<iostreams
#include<conio. h>

using namespace std;
L |

Compiled by: - Naresh Prasad Das Page 44

Object Oriented Programming in C++ | Unit-3

class complex
{
float realp.imagp;
public:
complex(float x, float y)//constructor two argument
{
realp=x:
imagp=y:
}
void display()
{
cout<<realp<<"+ i"<<imagp<<endl;
}
b
int main{)
{
float x.y:
cout<<"Enter real part:";
Cin>=>x;
cout<<"Enter Imaginary part:";
cin>>y;
complex cl(x,y); /fobject ¢ i§ereated and initialized
complex ¢2(cl); /fdefault copy constructor called
cout<<"First number is:";
cl.display();

cout<<"Second number is:"; Output:
c2.display(); WEnter real part:3
getch(); finter Imaginary part:-4
return 0: WFiret number is:-3+ id

L econd numbepr iz:3+ id

I
¥ Inabove example we have not written the user defined copy constructor, compiler provide the default copy constructor
when the statement complex:e2(cl); is exccuted. i.e. the data member of c2 is initialized by data member of c1.
%+ Hybrid Copy Constructor
¥ The hybrid constructor initialize the'data members of an object by using an existing object and variable. For example
suppose we want to initialize object e2(object of complex number) partially by object ¢l and partially by a variable k,
i.e. we want to initialize real part of €2 by real part of ¢l and image part of ¢2 by a variable k.

Example 3-8:

#include<iostream=
#includesconio.h>
using namespace std;
class complex
{

float realp.imagp;

public:

complex(float a, float b)//constructor two argument

{

realp=a;

imagp=b:
}
complex(complex &cl, float k) //hybrid constructor
{

realp=cl.realp;
imagp=k;
L |

Compiled by: - Naresh Prasad Das Page 45

Object Oriented Programming in C++ | Unit-3
L .]|

}
void display()
{
cout<<realp<<"+ i"<<imagp<<endl;
}
b
int main{)
{
float x.y.k;
cout<<"Enter real part:";
Cin==>x;
cout<<"Enter Imaginary part:";
cin>>y;
complex cl{x.y): /lobject ¢1 is created and initialized
cout<<"Enter value of k:";
cinz=k:
complex ¢2{cl k): /fhybrid constructor called
cout<<"First number is:";
cl.display(); Output:
cout<<"Second number is:";
c2.display(; Tasginacy pavt:d
getch(); i numher is:3+ id
return (;

4 I‘B part:

Second numbher isz3+ i2

I

¥ 1In above example real part of €2 is initialize by real part of ¢l andimage part of ¢2 is initialized by value of k.

3.4 Constructors with default Argument
¥ 1Itis possible to define a constructor with default argument fike in normal function.
¥ For example:
class complex
{
int realp,imagp;
public:
complex(int a, int b=0)
{
realp=a;
imagp=b;
}
I
¥ We can create the following type of objects for above class
(1) complex ¢1(5);
(2) complex c2(5,6);

If we create object like (1) then 5 is assigned to realp and 0 is assigned to imagp of ¢, because default value
of b is zero.

If we create object like (2) then 5 is assigned to realp and 6 is assigned to imagp.

Example 3-9: Write a program which calculates A where A = (1 + 1/100)* and r is 15 in some case. Design program by oop
approach.

#include<iostream=>
#include<conio.h>
#include<math.h>
using namespace std;

class cal
|

Compiled by: - Naresh Prasad Das Page 46

Object Oriented Programming in C++ | Unit-3

{

int n;

float p.r.A;

public:
cal(int x, float v, float z=15)
{

P=X; n=Yy; 1=7;

}
void output()
{

A=pFpow((1+r/100),n);
cout<<"A ="<<A<<endl;

b

int main{)

{
cal c1{1000.1});
cal ¢2(1000,1,25);
cout<<"Output for ¢l is"<<endl;
cl.output();
cout<<"Output for ¢2 is"<<endl;
c2.output();
getch();
retum (;

3.5 Destructors

{feonstructor with default argument

Output for c2 iz
n =125@

¥ A destructor is used to destroy the objects that have been ereated by a constructor. A destructor is a member function

like constructor.

¥ The name of destructor is same as constructor-{i.e. class name) but is preceded by a tild(~).
¥ Destructor will automatically be called by.compiler upon exit from the program to clean up storage which was taken

by object.
¥ Note that objects are destroyed in the reverse order of creation.

¥ Like constructor, destructor do not have a return value. They also take no arguments (the assumption being that there’s

only one way to destroy an object).
¥ For example
class.complex
{
int realp,imagp;
public:
complex()
{
realp=10; imagp=20;
}

~complex(){ |} {/destructor

b
We can write statement within the body of destructor also.
Example 3-10:

#include<iostream=>
using namespace std;
int count=();

class test

{
public:

Compiled by: - Naresh Prasad Das

Page 47

Object Oriented Programming in C++ | Unit-3

test()
{
count++;
cout<<"nConstructor Msg: Created Object number:"<<count<<endl;
}
~test()
{
cout<<"nDestructor Msg: Destroyed object number:"<<count<<endl;
count--
}
b
int main()
{
cout<<"Inside the main block....";
cout<<"\nCreating first object T1...";
test T1:
{
{/block 1
cout<<"Inside Block 1...";
cout<<"\nCreating two more object T2 and T3.:2%;
test T2, T3;
cout<<"\nLeaving Block 1...";
}
cout<<"\nBack inside main block...";
retum (;
}

Qutput:

Incide the main hlock..._.

iICreating first ohject Tl...

IConstructor Msg: Created Object number:ci
Inside Block 1...

iCreating twoe more ohject T2 and T3E...
fConstructor Msg: Created Object number:2

iGConstructor Msg: Greated Ohject number:3

Leauing Block 1...
Destructor Msg: Destroyed object number:c3

Dastructor Msg: Destroved ohject number:z2

Back inside main block. ..
Destructor Msg: Destroyed object number:l

3.6 Dynamic Initialization of Objects
¥ The initial value of an object may be provided during run time
¥ One advantage of dynamic initialization is that we can provide various initialization formats, using overloaded
constructors.
¥ “This provides the flexibility of using different format of data at run time depending upon the situations

Example 3-11:

#include<iostream>
#include<conio.h>
#include<math.h>
using namespace std;
class calc
{

int n;

float p.r.A;

Compiled by: - Naresh Prasad Das Page 48

Object Oriented Programming in C++ | Unit-3
L .]|

public:
cale(){ }
calc(float x, int y.float z=0.15)
{
pP=x;
n=y;
r=z;
}
cale(float x,int y.int z)
{
pP=x;
n=y;
r=float(z)/100;
}
void output()
{
A=p¥pow((1+r).n);
cout<<"A = "<<A<<endl;

b

int main{)

{
int t,irate;
float m,frate;
calc el,c2,c3;
cout<<"Enter time:":
cins>t;
cout<<"Enter principle amount:";
cin==>m;
cl=calc{m,t);
cout<<"Output for c1 is:™;
¢ l.outputi);
cout<<"Enter rat¢:in integer:";
cin>>irate;
c2=calc(mut,irate);
cout<<"Qutput forc2 is:™;
c2.output():
cout<<"Enter rate in floating point:";
cin==>frate;
¢3=calc{m,t,frate);
cont<<"Output for ¢3 is:";
c3.output();
getch();
return () Output:

1 [Enter time:iZd
iEnter principle amount:1B808
Output for cd is:=h = 1322.5
Enter rate in integer:=18

utput for izzA = 1218
FEnter rate in floating point:@.2
Gutput for iszh = 14408

. __|
Compiled by: - Naresh Prasad Das Page 49

Object Oriented Programming in C++ | Unit-3

3.7 Memory Mapping, Allocation and Recovery

371

Stack & Heap Memory

%+ Stack

¥ 1It's aregion of your computer's memory that stores temporary variables created by each function (including the main()
function).

¥ The stack is a "Last in First Out” data structure and limited in size

¥ Every time a function declares a new variable, it is "pushed” (inserted) onto the stack.

* Every time a function exits, all of the variables pushed onto the stack by that function, are freed or popped (that is to
say, they are deleted).

¥ Once a stack variable is freed, that region of memory becomes available for other stack variables.

A key to understanding the stack is the notion that when a function exits, all of its variables are popped off (Removed)
of the stack (and hence lost forever).

Advantages
= Memory is managed for you to store variables automatically. You don't have to allocate memory by hand, or free

it once you don't need it any more.

= (CPU organizes stack memory so efficiently, reading from and writing to stack variables.is very fast.

Limitations
= Limit (varies with OS) on the size of variables that can be store on the stack

%+ Heap

The heap is a region of your computer's memory that is not managed automatically for you, and is not as tightly
managed by the CPU.

¥ Dynamic memory allocation is a way for running programs to request memory from the operating system when
needed. This memory does not come from the program’s limited stack memory -- instead, it is allocated from a much
larger pool of memory managed by the operating system called the heap.

¥» It is a more free-floating region of memory (and is larger).

¥® To allocate memory on the heap, you must use new operitor. in C++.

¥ Once you have allocated memory on the heap, you are responsible for using delete to deallocate that memory once
you don't need it any more.

Unlike the stack, the heap does not have gize restrictions on variable size (apart from the obvious physical limitations
of your computer).

¥ Heap memory is slightly slower to be read from and written to, because one has to use pointers to access memory on
the heap.

¥ Unlike the stack, variables created onthe heap are accessible by any function, anywhere in your program. Heap

variables are essentially global in‘scope.

Stack vs. Heap Pros and Cons
Stack

= Very fastaccess

* Don't haveto explicitly de-allocate variables

» Space is. managéd efficiently by CPU, memory will not become fragmented
* Local variables only

s - Limit on stack size (OS-dependent)

= Variables cannot be resized

® * Variables can be accessed globally

= No limit on memory size

= (Relatively) slower access

= No guaranteed efficient use of space. memory may become fragmented over time as blocks of memory
are allocated, then freed

® You must manage memory (you're in charge of allocating (new) and freeing (delete) variables)

= Variables can be resized using new operator

|
Compiled by: - Maresh Prasad Das Page 50

Object Oriented Programming in C++ | Unit-3

3.7.2 New and Delete Operator
¥ C uses malloe() and ealloe() functions to allocate memory dynamically at run time. Similarly, it uses the function
free() to free dynamically allocated memory. Although C++ supports these functions, it also defines two unary
operators new and delete that perform the task of allocating and freeing the memory in a better and easier way. Since
these operators manipulate memory on the free store, they are also known as free store operators.
¥ An object can be created by using new and destroyed by using delete as and when required.

% new Operator
¥ The new operator can be used to create objects of any type. Its syntax is
pointer_variable=new data-type;
¥* Here, pointer-variable is a pointer of type data-type. The new operator allocates sufficient memory to hold a data
object of type data-type and return the address of the object.
¥ The data-type may be any valid data type. The pointer variables holds the address of the memory space allocated.
* For example:
int *a;
a=new int;
¥ Alternatively, we can combine the declaration of pointers and their assignments as follows:
int *p=new int ;
float *g=new float ;
¥ subsequently, the statements
*p=25
*=7.5;
assign 25 to the newly created int object and 7.5 to the float object
¥ Woe can also initialize the memory using new operator. This is'done as
pointer_variable=new data-type(value)

E.g.
int *p=new int(25):
float *g=new float(7.5);
¥ mnew can be used to create a memory space forany data type including user-defined types such as arrays, structures
and classes.
¥ The general form for a one-dimension array is
pointer: variable=new data_type[size];
Here, size specifies the number of elements in the array. For example,
int*p=new int[10]; creates a memory space for an array of 10 integers.
¥ For example we are creating a matrix dynamically
Note that pointer to pointer means pointer to array i.e. pointer to matrix (two dimensional array)
int ##p;
Now p is pointer to matrix and we can create the space as follows:
p = new int *[r];
where rissany integer value. This statement creates an array of pointer and assigns that to p. Now we can create space
for each row as follows:
for (int i = 0; i<r; i++)
{
plil = new int[c];
}
The statement p[i] = new int[c]; is executed r times therefore this creates space for r rows and each space length is
equal to space for ¢ int type elements.
%+ delete Operator
¥* In most cases, memory allocated dynamically is only needed during specific periods of time within a program.
¥* When a data object is no longer needed, it is destroyed to release the memory space for reuse. For this purpose, we use
delete operator. The general syntax is
delete pointer_variable;

The pointer_variable is the pointer that points to a data object created with new. For e.g.

|
Compiled by: - Maresh Prasad Das Page 51

Object Oriented Programming in C++ | Unit-3

delete p ;
delete q 3
* If we want to free a dynamically allocated array, we must use the following form of delete.
delete [size] pointer_variable ;
¥ The size specifies the number of elements in the array to be freed. The problem with this form is that the programmer
should remember the size of the array. Recent version of C++ do not require the size to be specified.

Example 3-12:
#include <iostreams
#include <conio.h>
using namespace std;
int main ()

{
int i,n,sum=();
int *p; //Declaration of pointer
cout << "How many numbers would you like to sum? ";
cin >>n;
p=new int[n]; //Dynamic memory allocation forp
for (i=0; i<n; i++)
{
cout << "Enter number: ";
cin => p[il;
}
for (i=0: i<n: i++)
{
sum+=p[i];
}
cout<<"Sum="<<sum;
delete[] p; {MDeallocation of variable p
getch():
retum (;
}

Output:

Hu nany numbers would Yo 1like sum? 5

T O

3.8 Dynamic Constructor & Destructor (Dynamic Memory allocation using constructor & Destructor)
¥ The constructor can also be used to allocate memory while creating objects. Allocation of memory to object at the
time of their construction is known as dynamic construction of objects.
¥* The memory'is allocated with the help of new operator.
¥ Memory:is deallocate using delete operator inside destructor.

Example 3-13:

#include <iostream>
#tinclude <conio.h>
using namespace std;
class sample{
int *a;
int n.i;
public:
sample (int x){ //Dynamic constructor

Compiled by: - Naresh Prasad Das Page 52

Object Oriented Programming in C++ | Unit-3

n=x;
a= new int [n]; {// a is n number of locations for intger type

}
void input(}{
cout<<"Enter Values:"<<endl:
for(int i=0:i<n;i++)
cin==ali];
}
void output() |
cout<<"Values are: "<<endl;
for(int i=0;i<n;i++)
cout<<ali]<<" ";

}
~sample() {

delete a;
}

b
int main ()
{

int num;

cout<<"Enter No of values to be entered:":

cinz>num;

sample e(numy); {fcalling dynamic constractor

e.input();

e.output() ;

getch();

return (; /fAutomatically call destructor
}

Output:

values to he entered:5

Ualues are!

In above example from main object passes the no of integer memory to be allocated to the constructor and inside constructor

there is new operator which will:allocates the memory according to the value of argument passed from main. Atend of program
it automatically call destructor

Example 3-14:
#include <iostream>
#include<string.h>
#include <conio.h>
using namespace std;
class sample
{
char *name;
int length;
public:
sample()
{
length=0;
name=new char[length+1];

Compiled by: - Naresh Prasad Das Page 53

Object Oriented Programming in C++ | Unit-3

}
sample(char *p)
{
length=strlen(p):
name=new char[length+1];
strepy(name.p);
}
void display()
{
cout<<name<<endl;
}
void join(sample &a, sample &b);
b
void sample::join(sample &a, sample &b)
{
length=alength+b.length;
delete name;
name=new char{length+1];
strepy (name.a.name);
strcat{name.b.name});

I

int main()

{
char *first="Nepal";
sample name 1 (first),name2("Engineering”j;name3("College"),s1.52;
sl.join(namel name2);
52.join(s1,name3);
name l.display();
name?2.display();
name3.display(); -
sl.display(): Engineering
s2.display();

o l1ege
BHepalEngineering
getch(): BHe palEngineeringCollege

retum.(;

|

¥ This program uses two constructors. The first is an empty constructor that allows us to declare an array of string. The
second constructor intitialize the length of the string. allocates necessary space for the string to be stored and creates
the string itself: Note that one additional character space is allocated to hold the end of string character *\0°.

¥ The member function join() concatenates the two string. It estimates the combined length of the strings to be joined,
allocates memory for the combined string and then creates the same using the string function strepy() and streat().
Note that in the function join(). length and name are members of the object that calls the function, while alength
and #.name are members of the argument object a. the main() function program concatenates three string into one
string.

Compiled by: - Naresh Prasad Das Page 54

Object Oriented Programming in C++ | Unit-4

4.1

class inherits some or all the traits from base class. The base class is unchanged by this.

4 Object Inheritance and Reusability

Introduction to inheritance
¥ Inheritance is the most powerful feature of object-oriented programming after classes and objects.
¥ Inheritance is the process of creating a new class, called derived class from existing class, called base class. The derived

¥ Most important advantage of inheritance is reusability. Once a base class is written and debugged, it need not be
touched again and we can use this class for deriving another class if we need.
¥* Reusing existing code saves time and money. By reusability a programmer can use a class created by another person
or company and without modifying it derive other class from it.

REUSABILITY

o Reusability means reusing the properties of base class in the derived class

o Reusability permits usage of members of base class

o Reusability is the outcome of inheritance
% Visibility Modifier (Access Specifier):

¥* Private member can be accessed only within the class in which they are defined while public.can be accessed from

outside the class also.

¥ The protected member can be accessed within the class in which they are defined and they are also accessed in derived
class which is derived by its own class. Note that protected member cannot be accessed from outside these classes.

Visibility Modifier Accessible from Accessible from Accessible from
(Access Specifier) own class derived cliss objects outside class
public yes yes yes
private yes no no
protected yes yes no
Base Class Visibility Derived Class Visibility
Public derivation Private derivation Protected derivation
Private Not inherited Not inherited Not inherited
Protected Protected Private Protected
Public Public Private Protected

4.2 FORMS OF INHERITANCE (SUB CLASS/SUB TYPES)

Inheritance is used in variety ways according to user’s requirements. The Following are forms of inheritance.

Sub classing for specialization (subtype): The derived child class is a specialized form of the parent class, in other
words, the child classis subtype/subclass of the parent

Sub classing for specification: The parent class defines behavior that will be implemented in the child class. The
inheritance for.specification can be recognized when a parent class does not implement actual behavior but it defines
how the behavior:will be implemented in the child classes

Sub classing for construction: The child class can be constructed form parent classes by implementing the behaviors
of parent classes

Sub classing for generalization: Sub classing for generalization is the opposite to sub classing for specifications. The
base class holds the common properties that will inherit to the derived class.

Sub classing for extension: The subclass for extension adds new functionality in child class form base class while
designing new child class. It is done simply add new function other than parent class have.

Sub classing for limitation: The subclass for limitation occurs when the behavior of subclass is similar or more
dependent to the behavior of parent class.

Sub classing for variance: The child class and parent class are varied when the level of inheritance increased, and the
class and subclass relationship is imaginary.

Sub classing for combination: The child class inherits features from more than one classes

Compiled by: - Maresh Prasad Das

Page 55

Object Oriented Programming in C++ | Unit-4

4.3 Defining Derived Class (Specifying Derived Class)
¥ A derived class can be defined by specifying its relationship with the base class in addition to its own detail.
¥ The general syntax is

class derived_class_name : visibility_mode base_class_name

{

/fmembers of derived class

| H

where, the colon (:) indicates that the derived_class_name is derived from the base_class_name. Thevisibility. mode
is optional, if present, may be either private or public. The default visibility mode is private. Visibility mode specifies
whether the features of the base class are privately derived or publicly derived or derived on protected:

* Example:
class ABC: private XYZ /I private derivation
: /fmembers of ABC
-:}:l;ass ABC : public XYZ /f public derivation
{ /fmembers of ABC
-:}:l;ﬂss ABC: protected XYZ /I protected derivation
{ /fmembers of ABC
-:}:1;355 ABC: XYZ #{ private derivation by default
{ /fmembers of ABC

b

¥ While any derived_class is inherited from a base _class, following things should be understood:

&)

When a base class/is publicly inherited by a derived class the private members are not inherited, the public
and protected are inherited. The public members of base class becomes public in derived class whereas
protected members of base class becomes protected in derived class.

When a base-class. is protectly inherited by a derived class, then public members of base class becomes
protected in derived class, protected members of base class becomes protected in the derived class. the private
membersof the base class are not inherited to derived class but note that we can access private member through
inherited member function of the base class.

When a-base class is privately inherited by a derived class, only the public and protected members of base
class can be accessed by the member functions of derived class. This means no private member of the base
class can be accessed by the objects of the derived class. Public and protected member of base class becomes
private in derived class.

4.3.1 Public Inheritance
1f the derivation type is public then the inheritance is known as public inheritance.

Example 4-1:

#include<iostream=
#include<conio.h>
using namespace std;
class B

{

Compiled by: - Maresh Prasad Das Page 56

Object Oriented Programming in C++ | Unit-4

private:
int x;
protected:
inty:
public:
int z;
void getdata()
{
cout<<"Enter First number:";
cims>x;
cout<<"Enter Second number:™;
cins>y;
cout<<"Enter third number:";
cins>z:
}
void showdata()
{
couts<"X="<<x<<endl;
cout<<"Y="<<y<<endl;
cout<e<"Z="<<z<<endl:
}
b
class D:public B
{
private:
int k;
public:
void getk()
{
cout<<"Enter K:":
cinssk:
}
void-outputt)
{
int s;
s=y+z+k:
cout<<"y+z+k="<<s<<endl;
1
b
int main() Output:
{ T Firet numbenr:4
Ddl: Second number:5
third number:=2
d1.getdata();
d1.getk();
d1.showdata();
d1.output(),
getch();
return ();
}

Note: In above example x is private member of class B and cannot be inherited but objected of D are able to access it through
an inherited member function of B (i.e. through getdata() and showdata() of class B.

Compiled by: - Naresh Prasad Das Page 57

Object Oriented Programming in C++ | Unit-4

4.3.2 Protected Inheritance
¥ If the derivation type is protected then inheritance is known as protected inheritance.

Example 4-2:

#include<iostream>
#include<conio. h>
using namespace std;

class B
{
private:
int x;
protected:
inty:
public:
void getdata();

void showdata();
b
class D:protected B
{
private:
int z;
public:
void getd();
void showd();

void B::getdata()

cout<<"Enter value of x:";

cin==>x;

cout<<"Enter value of Y {¢lass B);";
cin=>y;

void B::showdata()

cout<<" X="a<x<<endl;
couts<"¥="<<y<<endl;
}
void D:igetd()
{
getdata();
cout<<"Enter value of z:";
cin=>z;
cout <<"Enter value of Y (class D):";
cin>>y;

void D::showd()

showdata();
cout<s<"Z="<<z<<endl;
}
int main()
{
Ddl;
d1.getd();

|
Compiled by: - Maresh Prasad Das Page 58

Object Oriented Programming in C++ | Unit-4

d1.showd();
getch();
return (0

» value
» value H
v value (class D>:3

» value =5

{class B>:=2
?

4.3.3 Private Inheritance
¥ If the derivation type is private then inheritance is known as private inheritance.

Example 4-3:

#include<iostream=
#include<conio.h>
using namespace std;

class B
{
private:
int x;
protected:
inty;
public:
void getdata();
void showdata();
b
class D:private B
{
private:
intz:
public:
voidinput():
void output();
b
void B:getdata()
{
cout<<"Enter value of x:";
cin=>>x;
cout<<"Enter value of Y:";
cins>y;
}
void B::showdata()
{
couts<" X="<<x<<endl;
cout<<"Y="<<y<<endl;
}
void D:input()
{
getdata();
cout<<"Enter value of z.";
cin>>z:
}

Compiled by: - Naresh Prasad Das Page 59

Object Oriented Programming in C++ | Unit-4

void D::output()

{
int 1
f=y+z;
coute<"Y+7="<<f<<endl:

}

int main{)

{
Ddl; Output:
dl.input(); BFnter value of x:4 |
dl.output(); fEnter value of ¥:2
fEnter value of =:8
getch(); By +Z=18

retum (;

4.4 Type of Inheritance
A class can also inherit properties from more than one class or from more than one level. According to this we can classify
inheritance into following type:

Single Inheritance
Multiple Inheritance
Hierarchical Inheritance
Multilevel Inheritance
Hybrid Inheritance
Multipath Inheritance

ah T e

4.4.1 Single Inheritance
¥ 1If a class is derived from only one base class and derived class is not used as base class again then that is known as
single inheritance.
¥ One base class and one derived class only involved. B
B is base class G
D isderived class
D is not used as base class again
No further extension of derived class D

¥ All data members in protected-and public of base class B can be accessed in derived class D.
¥ General form

class B

{
protected:
private:
public:

b

class D: public B

{
private:
public:

b

Example 4-4:
#include<iostream>

#include<conio.h>
using namespace std;

Compiled by: - Naresh Prasad Das Page 60

Object Oriented Programming in C++ | Unit-4

class B //base class
{
int a; {/fprivate not inheritable
public:
int b
void set_ab();
int get_a():
b
class D:public B /fderived class from B
{
intc;
public:
void mul();
void display();
b
void B::set_ab()
{
cout<<"Enter value of a:";
cin>>a;
cout<<"Enter value of b:";
cin==b;
}
int B::get_a()
{
return a;
}
void D::mul()
{
c=b*get_a();
}
void D::display()
{
cout<<"a="<<get_al)<<endl;
cout<<"b = "g<b<<endl;
cout<<"c = "<<oe<endl;
}
int main{)
{
D dl;
dl.set_ab{); Qutput:
dEmul(y; BEnter value of azh
d1.display(); Enter value of h=3
getch(); R
return (; c 15
| .

4.4.2 Multiple Inheritance
¥ 1If a class is derived from more than one base class then inheritance is called as multiple inheritance. Multiple
inheritance allows us to combine the features of several existing classes as starting point for defining new class. The
syntax of multiple inheritance is:
class D: derivation B1, derivation B2
{
{/Member of class D
I
L |

Compiled by: - Naresh Prasad Das Page 61

Object Oriented Programming in C++ | Unit-4

The derivation is private, public or protected. Note this is also possible that one derivation is public and another one
is protected or private, etc.

* For example
(1) class D : public B1, public B2

{
private:
int a;
b
(2) class D : public B, protected B2
{
private:
int a;
b
(3) class D : private B1, protected B2, public B3
{
private:
int a;
b

If B1, B2 and Bn are three classes from which class D is derived then we can draw the multiple inheritance as

ni ——nee nn_

ale

13

Example 4-5:

#include<iostream:
#include<conio.h>
using namespace std;

class samplel {/base class
{
protected:
int m;
public:
void get_m(int);
b
class sample2 //base class
{
protected:
int n;
public:
void get_n(int);
b
class sample3:public samplel, public sample2 {/derived class from sampl] and sample2
{
public:
void display();

b
void samplel::get_m(int x)
{
m=x;
L |

Compiled by: - Naresh Prasad Das Page 62

Object Oriented Programming in C++ | Unit-4

}

void sample2::get_n(int y)

{
n=y;

}

void sample3::display()

{
cout<<"Value of m="<<m<<endl;
cout<<"Value of n="<<n<<endl;
cout<<"Value of m+n="<<m+n<<endl;

}

int main()

{
sample3 p:
p-get_m{10): Output:
p-get_n(20); : _
p-display():
getch():
retum (;

Example 4-6:
#include <iostream:
#include <conio.h>
using namespace std;
class biodata {/base class
{
char name[20];
char:semesterf20];

int age :
mnten ;
publie;
void getbiodatal):
void showbiodata();
K
class marks {//base class
{
char sub[10];
float total;
public:
void getm();
void showmi);
b
class final: public biodata, public marks {/derived class from biodata and marks
{
char fteacher[20];
public:

void getf();
void showfi);
b
void biodata:: getbiodata()
{
cout<<"Enter name:";
cin=>name,

Compiled by: - Naresh Prasad Das Page 63

Object Oriented Programming in C++ | Unit-4

cout<<"Enter semester:";

cin>>semester;
cout<<"Enter age:";
cin>>age;
cout<<"Enter m:";
cin=>rm;

}

void biodata:: showbiodata()

{
cout<<"Name:"<<name<<endl;
cout<<"Semester: "<<semester<<end!:
cout<<"Age:"<<age<<endl;
cout<<"Rn:"<<rn<<endl;

}

void marks:: getm()

{
cout<<"Enter subject name:";
cin=>sub ;
cout<<"Enter marks:":
cin=>total:

}

void marks:: showm()

{

cout<<"Subject name:"<<sub<<endl :
cout<<"Marks are:"<<tatal<<endl ; }
void final:: getf()

{
cout<<"Enter your favourite teacher:";
cinz=fteacher;
}
void final:: showi()
{
cout<<"Favourite teacher:"<<fteacher<<endl;
}
int maing)
{
final 1 Output:
f.getbiodata(); » name:zita
; i + zemesterizecond
f.getm(); age:21
f‘g‘:[f{}; Tﬁﬂggzt name =oop
f.showhiodata(); » marks:85
; » your favourite teacher:ram
f.showm(); ame:sita
f.ShOWfU; ;Lm:g:er:secnnﬂ
getch();
return (0, {
Avourice eacher::ram
| F ite t k

4.4.3 Hierarchical Inheritance

¥ When from one base class more than one classes are derived that is called hierarchical inheritance. The diagram for
hierarchical inheritance is:
| 7

¥
Lot | ;e | |os

Compiled by: - Naresh Prasad Das Page 64

Object Oriented Programming in C++ | Unit-4

¥ Derived classes can not be used for deriving classes.
¥ Itis also specialization (super class into sub class).
¥ The general format of hierarchical inheritance is:
class B{
protected:
private:
public:
b
class D1: public B{
private:
public:
b
class D2: public B{
private:
public:
I
class D3: public B{
private:
public:
I

In above General form there are 4 classes B, D1 D2 and D3. Class B is base class and Class D1, D2, D3 is derived
class. All data members in protected and public of class B can be accessed using object of classes D1, D2, D3

¥ With the help of hierarchical inheritance we can distribute the property of one class into many classes.
Example 4-7:

#include<iostream>
#include<conio. h>
using namespace std;

class B #/base class
{
protected:
int x.y;
public:
void-assign()
{
x=15;
y=35;
}
8
class’D1;public B {/derived class from B
{
int s;
public:
void sum()
{
S=X+Y;

cout<<"Sum (x+y) = "<<s<<endl:

}
b

class D2:public B {/derived class from B
{

int t;

public:

|
Compiled by: - Maresh Prasad Das Page 65

Object Oriented Programming in C++ | Unit-4

4.44

void sub()
{
t=x-y;
cout<<"sub (x-Y) = "<<t<<endl;
}
b
class D3:public B /fderived class from B
{
int m;
public:
void mul()
{
m=x*y;
cout<<"Mul (x*y) = "<<m<<endl;
}
b
int main({)
{
D1 objl;
D2 obj2;
D3 obj3:
objl.assign();
objl.sum();
obj2.assign();
obj2.sub();
obj3.assign();
obj3.mul():
getch();
return (;
}
Multilevel Inheritance

The mechanism of deriving a'class from another derived class is called multilevel.
When a class is derived from another derived class i.e. derived class acts as base class, such type of inheritance is
called multilevel inheritance:

L n |

o2
| Dll
In the figure, class’ D1 derived from class B and class D2 is derived from class D1. Thus class D1 provides a link for
inheritance between B and D2 and hence it is called intermediate base class.
Inheritance can be extended more by deriving another class from class D2,
The general format of multilevel inheritance is:

class B{
protected:
private:
public:
b
class D1: public B{
protected:
private:
public:
}:

. __|
Compiled by: - Naresh Prasad Das Page 66

Object Oriented Programming in C++ | Unit-4

class D2: public D1/
private:
public:

{5

In above general form there are 3 classes B, D1 and D2. Class B is base class and class D1 is derived
class from class B and also class D2 is derived from class D1. All data members in protected and public of
class B can be accessed using object of class D1, D2 and data members in protected and public of class D1
can be accessed using object of class D2.

Example 4-8:

#include<iostream>
#include<conio.h>
using namespace std;

class student //base class
{
protected:
char name[30];
int rn;
public:
void getdata()
{
cout<<"Enter name:";
cin>>name;
cout<<"Enter Roll number:";
cin>>mn;
}
void showdata()
{
cout<<"Name is:"<<name<<endl;
cout<<"Roll number is:"<<m<<endl;
}
1
class marks: public-student /fderived class from student
{
protected:
int ml,m2;
public;
void getmarks()
{
cout<<"Enter midterm 1 marks of oop:";
cin>>ml;
cout<<"Enter midterm?2 marks of oop:";
cin>>m2;
}
void showmarks()
{
cout<<"first midterm marks in QOOP is:"<<ml<<endl;
cout<<"Second midterm marks in OOP is:"<<m2<<endl;
}
¥s
class result:public marks /fderived class from marks
{
int total;

Compiled by: - Maresh Prasad Das Page 67

Object Oriented Programming in C++ | Unit-4

445

public:
void output()
{
total=m1+m2;
cout<<"Total marks in OOP is:"<<total<<endl;
}
};
int main()
{
result s;
s.getdata();
s.getmarks(); Output:
cout<<"The record of student is:"<<endl; n t namne 2 Ean
. y Roll number:=325
s.showdata(); nter midterml marks of oop:43
s.showmarks(); Enter midterm? marks of oop:db
v The recowd of student is:
s.output(); b e wan
getch(); Ro1l number is:325
0: firat midterm marks in OOP i=: 43
return U3 Cecond midterm marks in Q0P isc46
} otal marks in OQP is:89
Hybrid Inheritance

If we apply more than one type of inheritance to design a problem then that is known as hybrid inheritance.
The following diagram shows the hybrid inheritance:

e |

Two types of inheritance is used ie. single (:B1->D1)and multiple (D1, B2 -> D2). Class D1 is derived from class
B1 i.e. single inheritance and class D2 is derived from classes D1 and B2 i.e. multiple inheritance.

There is two base classes (more than one base class involved).

General form of Hybrid inheritance

class B1{
protected:
private:
public;
b
class B2{
protected:
private:
public:
Vi
class D1 public B1{
protected:
private: public:
}:
class D2: public D1, public B2
private:
public:
};

In above general form there are four classes B1, B2, D1, D2. Classes B1 & B2 are base classes and class DI is
derived class from class B1 and class D2 is derived class from D1 and B2. All the data members in protected and
public of class B1 can be accessed using object of classes D1, D2 and classes D1 & B2 can be accessed by class D2.

. ___|
Compiled by: - Naresh Prasad Das Page 68

Object Oriented Programming in C++ | Unit-4

Example 4-9:

#include<iostream=
#include<conio.h>
using namespace std;

class student //base class
{
protected:
char name[30];
int rn;
public:

void getdata()

{
cout<<"Enter name:";
cin>>name;
cout<<"Enter Roll number:":
cin>>rm;

}
void showdata()

{
cout<<"Name is;"<<name<<endl;
cout<<"Roll number is:"<<m<<end!;
}
b
class sports {//base class
{
protected:
int score;
public:
void getscore()
{
cout<<"Enter:score in:sport:";
cin=>score: :
}
b
class marks:public student /lderived class from student
{
protected;
intmbm2:
public:
void getmarks()
{
cout<<"Enter midterm] marks of oop:";
cin>>ml;
cout<<"Enter midterm2 marks of oop:";
cin>>m2;

|

void showmarks()

{

cout<<"first midterm marks in QOOP is:"<<m l<<endl;
cout<<"Second midterm marks in OOP is:"<<m2<<endl;

Compiled by: - Maresh Prasad Das Page 69

Object Oriented Programming in C++ | Unit-4
L]

class result:public marks, public sports /fderived class from marks and sports
{
int total;
public:
void output()

{

total=m l+m?2;
cout<<"Total marks in OOP is:"<<total<<endl:
cout<<"Score in sport is:"<<score<<endl;

b

int main()

{

result s; Output:
s.getdata(); .

; name :ram
s.getmarks(); Roll number:325
s.getscorel); midterml marks of oop:46

2 i / ; - midtermZ marks of oop:47

cout<<"The record of student is:"<<endl; score in sport: 65
s.showdata(); The wecord of student is:

’ Mame iz:ram
s.showmarks(); oll number is:325

irst midterm marks in O00OP is:46
; midterm marks in OOPF is:=47
getch(); otal marks in 00P is:93

s.output():

core in spoprt is:65

return (0

}
4.4.6 Multipath inheritance
¥ When a class is derived from 2 or more classes that are derived from same base class such typc of inheritance

o B is base class r

o Classes D1 and D2 are derived from class B =
o Both Class DI and D2 inherit properties of Class B
o Class C is derived from class D1 and D2 Bl = 52 i
o Ambiguity is generated =
o We make Base class as virtual for avoiding ambiguity —,
¥ General form (Multipath inheritance) TE |
class B{
protected:
private:
public:
};
class D1: virtual public B{
protected:
private:
public:
4
class D2: virtual public B {
protected:
private:
public:
};
class C:public D1, public D2{
protected:
private:
public:
1

. ___|
Compiled by: - Naresh Prasad Das Page 70

Object Oriented Programming in C++ | Unit-4

In General form there are 4 classes B, D1, D2 and C. Class B is base class and Class D1 & D2 is derived class from
Class B and class C is derived class from classes D1 & D2, both contains properties of B. All data members in
protected and public of class B can be accessed using object of classes D1, D2, C and of classes D1 & D2 can be
accessed by class C. Here properties of class B is inherited to class C through two paths (B->D1->C & B->D2->C),
so there will be ambiguity. To avoid ambiguity we make the base class i.e. class B as virtual

4.5 Virtual Base Class

¥ Consider a situation for which the diagram is shown below:

The class D1 and D2 are derived from class B and class C is derived from two classes D1 and D2. In above arrangement
problem can arise if a member function in the C class want to access data or functionin the class B. See the following
example:
Example 4-10:

#include<iostream>

#include<conio.h>

using namespace std;

class B

{

protected:
int data;

b

class D1:public B { };

class D2:public B { };

class C:public D1, public D2

{
public:
void showdatar)
f i
data=20: /{Error
' cout<<"Data="<<data;
}
F3
int main()
{
C obj;
obj.showdata();
getch():
retumn (;

I

In Example:4-10 there is an error. Because showdata() function in class C attempts to access data which is in class B. When
the class D1 and D2 are derived from class B, the member data of class B is inherit in class D1 and class D2.

Member
of class B data |
s -
rd i \\

Member of class D1 rlata data | Member of class N2
Inherited from class B

Inherited from class B

Compiled by: - Naresh Prasad Das Page 71

Object Oriented Programming in C++ | Unit-4

When class C is derived from class D1 and class D2 then the member data is inherited from class D1 and from class D2 also.
Therefore the class C has two copies of same data.

Member
of class B :

;/-

Member of class D1 data Member of class D2

Inherited trom class B

e Inherited from class B
_'data
data«
Data inherited from B Data- inherited from B
toD1thenD1toC toD2thenD2toC

Therefore when the member function showdata() of class C access data the situation is ambiguous and therefore compiler
gives error.

¥ To eliminate the ambiguity the common base class is declared as virtual base class by just-writing virtual word.
for removing the error we change example 4-10 as follows:

#include<iostream:=
#include<conio.h>
using namespace std;
class B
{

protected:

int data;

b
class D1:virtal publicB. { }:
class D2:virtual public B-{ };
class C:public DI public D2

{
public:
#void showdata()
{
data=20;
cout<<"Data="<<data;
}
b
int main()
{
C obj:
obj.showdata();
getch();
return ()

I

¥ The use of keyword virtual in class D1 and D2 causes them to share a single common inherited copy of data. Now
since there is only one copy of data, there is no ambiguity when it is referred to in class C. Or in other words when a
class is made virtual base class, C++ takes necessary care to see the only one copy of that class is inherited, regardless
of how many inheritance paths exist between virtual base class and derived class.

¥ Note that the keyword virtual and public may be used in either order.

Compiled by: - Naresh Prasad Das Page 72

Object Oriented Programming in C++ | Unit-4

4.6 Abstract class
¥ The abstract class is one that is not used to create objects. An abstract class is used only for base class (to be inherited
by other classes).
¥ Itis design concept in program development and provides a base upon which other classes may be built.
¥ A class is made abstract by declaring at least one of its functions as pure virtual function. A pure virtual function is
specified by placing "= 0" in its declaration.
¥ Pure virtual Functions are virtual functions with no definition. They start with virtual keyword and ends with "= (",

Example 4-11:

#include<iostream>
#include<conio.h>
using namespace std;
class Shape {/base class
{
protected:
int width:
int height;
public:

virtual int getArea() = 0: /Il pure virtual function'providing interface framework.
void setWidth(int w)
{
width = w;
}
void setHeight(int h)
{
height = h;
}
b
class Rectangle: public Shape J/ Derived classes
{
public:
int getArea()
{ ;
return {width # height);
}
b
class Triangle: public Shape
{
public:
int getArea()
{
return (width * height)/2;
}
H

int main()
{
Rectangle Rect:
Triangle Tri;
Rect.setWidth(5);
Rect.setHeight(7):
{/ Print the area of the object.
cout << "Total Rectangle area: " << Rect.getArea() << endl;

|
Compiled by: - Maresh Prasad Das Page 73

Object Oriented Programming in C++ | Unit-4

Tri.setWidth(5);

Tri.setHeight(7); Output:

// Print the area of the object. MTotal Re '.l-:.ang le area: 3b |
cout << "Total Triangle area: " << Tri.getArea() << endl, flotal Triangle areaz 17
getch();

return (),

i

* In above program class Shape is Abstract class.

4.7 Casting Base Class Pointer to Derived Class Pointers
¥ Pointers cannot be used only in the base class but also in derived class. Pointers to objects of a base class are type

compatible with pointers to objects of derived class. Therefore, a single pointer variable can be made to‘point to'ebjects
belonging to different classes.

¥* For example, if B is a base class and D is a derived class from B, then a pointer declared as a pointer to B can also be
a pointer to D. Consider the following declaration:

B *eptr; /l pointer to class B type variable
Bhb; {// base object
D d; {/ derived object
cptr=&b; // cptr points to object b
We can make cptr to point to the objects d as follows:

cptr=&d; // cptr points to object d

This is valid in C++ because d is an object derived from the class B. However, there is a problem in using cptr to access the
public members of the derived class D. Using cptr, we can access only those members which are inherited from B and not the

members that originally belong to D. In case a member of D'has'the same name as one of the members of B, then any reference
to that member by cptr will always access the base class member.

Although C++ permits a base pointer to point any ebject derived from that base, the pointer cannot be directly used to access
all the members of the derived class. We may have to use another pointer declared as pointer to the derived type.
Example 4-12:

#tinclude<iostrean

#include<conio.h>
using namespace std;

class BC
{
public:
int b;
void show()
{
coute<"b="<<b<<endl;
}
|5
class DC: public BC
{
public:
int d;
void show()
{

coutz<"b="<<bh<<endl<<"d="<<d<<endl;

}
b

Compiled by: - Naresh Prasad Das Page 74

Object Oriented Programming in C++ | Unit-4

int main{)

{
BC*bptr; /fbase pointer
BC base;
bpt=&base: /fbase address
bptr->b=100; ffaccess BC via base pointer
cout<<"bptr points to base object \n";
bptr->show();
DC derived: ffderived class
bpt=&derived; /faddress of derived class’s object
bptr->b=200; {/f access DC via base pointer
JH:
bptr->d=300; fwon’t work
cout<<"bptr now points to derived object \n";
bptr-=>show(); {fbptr now point to derived object
*
[*accessing d using a pointer to type derived class DC #/
DC*dptr; /fderived type pointer
dptr=&derived;
dptr->d=300;
cout<<"dptr is derived type pointer \n"; Output:
dptr->show(); fhptr points to hase obhject
cout<<"using(DC*) bptr)in": ih=1068

Mptr is derived type pointer

((DC*)bptr)->d=400; // cast bptr to DC type
((DC*)bptr)>show);

getch();

return (;

4.8 Constructors and Destructors in inheritance

It is possible for the base class, the derived class or both to have constructor and / or destructor. When a base class and a
derived class both have constructor and destructor functions, the constructor functions are executed in order of derivation. The
destructor functions are executed in-reverse order. That is the base class constructor is executed before the constructor in the
derived class. The reverse is true for destructor functions: the destructor in the derived class is executed before the base class
destructor.

o Constructor is used to initialize variables and allocation of memory of object

o Destructor is used to destroy objects

o Compiler automatically calls constructer of base class and derived class automatically when derived class object is
created.

o If we declare ‘derived class object in inheritance constructor of base class is executed first and then constructor of
derived class

o If derived class object goes out of scope or deleted by programmer the derived class destructor is executed first and
then base class destructor

%+ Default Constructor (No argument) in Inheritance
Example 4-13:

#include<iostream=
#include<conio.h>

using namespace std;

class B //Base Class
{

Compiled by: - Naresh Prasad Das Page 75

Object Oriented Programming in C++ | Unit-4

public:
B() {/Base Class B Constructor
{
cout<<"Constructor called Class B"<<endl:
}
~B()
{
cout<<"Destructor called Class B"<<endl;
}
b
class D:public B {/Derived class
{
public:
D) /Derived Class D Constructor
{
cout<<"Constructor called Class D"<<endl;
}
~D() /Derived Class D Destructor
{
cout<<"Destructor called Class D"<<endl;
}
b
int main() Output:
{ I'IS l:‘l.lt‘.:tﬂ 3 S cae Cass
i i ; ; fConstructor called Class D
Dtﬂbj,n /fDerived dlass objpct obj Destructor called Class D
return (;

iestructor called Class B

I

In Above Example Program Class B is base class with-ene constructor and destructor, Class D is derived from class B having
a constructor and destructor. In main() Object of ‘derived class i.e. class D is declared. When class D’s object is declared

constructor of base class is executed followed by derived class constructor. At end of program destructor of derived classis
executed first followed by base class destructor.

Note: If there is no constructor specify in derived class then derived class will use the appropriate constructor (i.e. no
argument constructor) of base class.

%+ Parameterized constructor (with argument) in inheritance
¥ In parameterized constructor it is compulsory to have derived constructor if there base class constructor.
¥ Derived class constructor is used to pass arguments to the base class.

¥ If derived class constructor is not available, it is not possible to pass arguments from derived class object to base class
constructor.

¥ I we need to pass an argument to the constructor of the base class, a little more effort is needed:
o All necessary arguments to both the class and derived class are passed to the derived class constructor.

o Using an expanded form of the derived class” constructor declaration, we then pass the appropriate arguments
along to the base class.

The syntax for passing an argument from the derived class to the base class is as

derived_constructor(arg _list) : base(arg_list)
{
body of the derived class constructor
}
Here, base is the name of the base class. It is permissible for both the derived class and the base class to use the same
argument. It is possible for the derived class to ignore all arguments and just pass them along to the base.

Compiled by: - Naresh Prasad Das Page 76

Object Oriented Programming in C++ | Unit-4

Example 5-14: Parameterized constructor passing same argument for base class and derived class
#include<iostrean
#tinclude<conio.h>
using namespace std;

class B {/Base Class
{
int x;
public:
B(int n) //Base Class B Constructor with one argument
{
X=1;

cout<<"Constructor called Class B"<<endl:
cout<<"Value of x="<<x<<endl;

~B()
{
cout<<"Destructor called Class B"<<endl;
}
b
class D:public B {/Derived class
{
inty;
public:
D{int m):B(m) /Derived Class D Constructor passing argument to base class B
{
y=m

cout<<"Constructor called Class D"<<endl;
cout<<"Value of y="<<y<<endl;

~D() #Derived Class D Destructor

cout<<"Destructor called Class D"<<endl;

b
int main()

{

D obj(10): {/Derived class object obj passing argument to derived class
return O; Output:

énnstructnr caiieﬁ-ﬁia

Deztructor called Class D
Destructor called Class B

Example 4-15; Parameterized constructor passing different argument for base class and derived class
#include<iostreams=
#include<conio.h>
using namespace std;
class B //Base Class
{
int x;
public:
B{int n) {/Base Class B Constructor with one argument
{
X=1;
cout<<"Constructor called Class B"<<endl;

Compiled by: - Naresh Prasad Das Page 77

Object Oriented Programming in C++ | Unit-4

cout<<"Value of x="<<x<<endl;

}
b
class D:public B {/Derived class
{
inty;
public:
D{int m,int n):B(n) /Derived Class D Constructor m is used in derived class and n is passed to base class B
{
y=n
cout<<"Constructor called Class D"<<endl;
cout<<"Value of y="<<y<<endl;
}
b
int main()
{
D obj(10,15): {/Derived class object obj passing argument to derived class
return 0;
}
Qutput:

Constructor called Class
Value of y=18

Note: If the inheritance is multiple and we want to call all the base constructor then we can call as follows:
Derived_constructor(argument):basel _constructor{argument),base2_constructor{argument),.......

Example 4-16:
#include<iostream>
#include<conio.h>
using namespace std;

class B1 {/Base Class
{
int x;
public:
Bl{intn) {/Base Class B2 Constructor with one argument
{
X=n:
cout<<"Constructor called Class B 1"<<endl;
}
void showx()
{
cout=<"Value of x="<<x<<endl:
1
i
class B2 //Base Class
{
int y;
public:
B2(int m) {/Base Class B2 Constructor with one argument
{
y=m;
cout<<"Constructor called Class B2"<<endl;
}

Compiled by: - Naresh Prasad Das Page 78

Object Oriented Programming in C++ | Unit-4

void showy()

{
cout<<"Value of y="<<y<<endl;
}
b
class D:public B1,public B2 //Derived class
{
int z;
public:
Diint i.int j. int k):B1(i),B2(j)
{
z=k:
cout<<"Constructor called Class D"<<endl;
}
void showz()
{
cout<<"Value of z="<<z<<endl;
}
b
int main()
{
D obj(10.15,25); Output:
obj.showx(); FConstructor called Class
obj.showy(); fConztructor called Class
. . fConstructor called Class
obj.showz(); fWalue of x=10
return (0 :
| falue of ==25

4.9 1IS-A & HAS-A rule

b

4.9.1

Vv VY Y

A

Division into parts or division into specialization will represent two most important rules of abstraction i.e. is-a rule
and has-a rule

While designing the program we should know:the relationship among objects of components through analyzing the
behaviors in different manner.

Our idealization of inheritance'is captured in a simple rule-of-thumb.

Try forming the English sentences "An A is-a B". If it ""sounds right" to your ear, then A can be made a subclass of
B.

A dog is-a mammal; and theérefore a dog inherits from mammal

A car is-a engine sounds wrong, and therefore inheritance is not natural. But a car has-a engine.

IS-A Rule

Is a relationship says that the first component is specifies the instance of second component.

The data and behavior related to the animal classes can be inherited to the many sub classes.

IS=A rule basically imply some inheritance base class to derived class or super class sub class

Example: Consider class fruit as base class or super class we can create sub classes like class apple, orange, banana
from class fruit because all sub classes have some similar properties of fruit so those properties can be inherited.
Write any example program of multiple inheritance.

Example:

class Vechicle

{

protected:
int price,
int number;

E

. __|
Compiled by: - Naresh Prasad Das Page 79

Object Oriented Programming in C++ | Unit-4

class Car: Public Vehicle
{

b
class Bus: Public Vehicle
{

b
In above example common features (price, number) are in super class. Those with different will be sub class

4.9.2 HAS-A Rule (Container Class/Containership/Compesition)

¥ HAS rule means division into parts.

¥ Consider the term “A car has an engine”, “A bus has an engine”. We cannot use engine the super class properties to
all child classes because the engine has different for all transportation means. The engine is independent properties
that cannot be directly called to the car, bus classes. We can include the class engine or class brake in class car not
derive them.

¥ It is also called container class or containership because object of one class will beused inside-other class which means
member of one class is available in other class. '

¥ Example for Container Class

Example 4-17:

#include<iostream=
#include<conio.h>
using namespace std;

class B
{
int x;
public:
B()
{
x=10
}
void dispalyl()
{ :
coute<"Value of x="<<x<<endl;
}
H
classD
{
-y,
B obijb; {/Object of Class B
public:
DO)
{
v=2();
}
void display2()
{
objb.dispaly1(): /ICalling member of Class B from member of D
cout<<"Value of y="<<y<<endl;
}
b
int main()
{

Compiled by: - Maresh Prasad Das Page 20

Object Oriented Programming in C++ | Unit-4

D objd: /fobject of class D Output:
objd.display2(); Ualue of x=10
return 0, BUalue of y=28

In Above Example program there are 2 class B & D, Class B have a data member integer x and one default constructor and
one member function displayl(), Class D have 2 data member one is integer y and another is objb object of class B and one
constructor and one member function i.e. display2() and inside diplay2 we call member function of class B i.e.display1(). Here
class B’s object is declared inside class D, so class D contains members of class B or class D HAS A object of class B (Class
D is composite class).

i

4.10 Composition/Container Vs Inheritance

Composition Inheritance

Composition indicates the operation of an existing | Inheritance is a super set of existing structure
structure

Cannot reuse code directly but provide greater | Inheritance can be directly reused the code and function
functionality provided by parent class

Code become shorter than inheritance Code become longer than composition

Very easy to re-implement the behaviors and functions | Difficult to re-implement the behaviors

Example : write example from has a rule Example : Write an example of any inheritance

4.11 Pros and Cons of inheritance

s+ Pros(Merits)

Generate more dominant object

It supports the concept of hierarchical classification.

The derived class inherits some orall the properties of base class.

Inheritance provides the concept of reusability. This means additional feature can be added to an existing class without
modifying the original class. This'helps to save development time and reduce cost of maintenance.

Code sharing can occurat several places.

It will permit the construction of reusable software components. Already such libraries are commercially available.
The new software systemcan be generated more quickly and conveniently by rapid prototyping.

Programmers ¢an divide their work themselves and later on combine their codes.

YV YWY

ons(Demerits)
Compiler overhead- reduce execution speed
Wastage of space in case some member function is unused
Inappropriate usage will cause complexity in program
The base and derived class get tightly coupled. This means one cannot be used independent of each other that is to say
they are interconnected to each other.
We know that inheritance uses the concept of reusability of program codes so the defects in the original code module
might be transferred to the new module there by resulting in defective modules.

-
3
VYYVEO VYVY

Y

4.12 Subclass Subtype and Principle of Substitutability
¥ A class which inherits the features of upper class is known as subclass.
¥ Subclass provides a way of constructing new components by existing components.
¥ The particular behavior which is inherited in the base class is known as subtype.

Compiled by: - Naresh Prasad Das Page 81

Object Oriented Programming in C++ | Unit-4

b
»

Subtype is defined in terms of behaviors not in terms of structure if we have two classes B and D then, B is super class
and D is sub class.

The behavior of B can be shared by sub class (child class).

The relations of the sub class and subtype are clearly defined in terms of the relationship of data types associated with
parent class to the data type associated with derived class.

A variable declared as an integer can never hold a value of string in derived class.

A variable declared as a parent class can hold a variable that is an instance of a child class.

Some relations of subclass and subtype are given below

>
b
®
>

Instance/object of sub class must implement through inheritance of super class.
It can be access all functions and properties defined in the parent class.
Similarly subclass also can be defined new functionality

Instance of subclass influence all data associated with parent class.

Principle of Substitutability

The principle of substitutability referred to the relationship between same variable name declared in parent ¢lass and sub class.
The concept of substitutability is provided by inheritance. Substitutability is a feature of:programming in which certain
behavior can substitutes in other parts of the program. The principle of substitutability says that if we have two classes B and
D. Then D is subclass of B that can shared possible substitute on the derived class D forinstance of class B.

Compiled by: - Maresh Prasad Das Page 82

Object Oriented Programming in C++ | Unit-5

5 Polymorphism

5.1 Introduction

b
»
b

b

Greek word poly means many/multiple and morphos means forms.

Polymorphism simply means "the occurrence of something in different forms".

Polymorphism is very important feature of object oriented programming. Polymorphism means one name, multiple
form.

Function overloading, Operator overloading and virtual functions are part of polymorphism.

%+ Polymorphic Variable
A polymorphic variable is a one which has many faces i.e. it can hold the value of different types. Polymorphic-variable
employs the principle of substitutability.

% Overriding
When a child class defines a method by the same name as that used for method in the parent class. The method in the child
effectively hides or overrides the method in the parent class. In other words, a method in a class that has the same name as
a method in a superclass is said to override the method in parent class.

% Overloading
Overloading means we can have several different functions with same name while overriding means that out of several
functions the right one is selected at the run time depending on the dynamic typé of-objects.

5.2 Classification of Polymorphism

Q
Q

5.2.1
=

5.2.2

Compile-time polymorphism
Run-time polymorphism

Compile Time Polymorphism
The overloaded member functions are selected for invoking by matching arguments, both type and number. This
information is known to the compiler at the compile’time, therefore, compiler can select appropriate function. So, this
is known as compile time polymorphism.
It is also called early binding or static binding: The example of compile time polymorphism are:

o Function overloading

o Operator overloading

Run Time Polymorphism
If a member function is selected while program is running then this is called run time polymorphism. In run time
polymorphism, the function'link with a'class very late (i.e. after compilation), therefore, this is called late binding or
dynamic binding. This is called dynamic binding because function is selected dynamically at runtime. For example

o Virtual function

5.3 Function Overloading In C++

»
b
®
>
®

>

Overloading refers to the use of the same thing for different purposes. C++ permits overloading of function. This
means that-we canuse the same function name for a number of times for different purposes.

We can have multiple definitions for the same function name in the same scope.

The function would perform different operation depending on the argument list in the function call.

The definition of the function must differ from each other by the types and/or the number of arguments in the argument
list.

The comrect function to be invoked is determined by checking the number and type of the arguments but not on the
function type.

For example the function name area() can be used to find the area of square, rectangle and circle as follows:

Example 5-1:

#include<iostream>
#include<conio.h>
using namespace std;
int area(int);

int area(int, int);

|
Compiled by: - Maresh Prasad Das Page 23

Object Oriented Programming in C++ | Unit-5

float area(float);
int main()

{
int 1.b;
float r;
cout<<"Calculating area of square:"<<endl;
cout<<"Enter side of sqaure:"<<endl;
cin=>l;
cout<<"Area of square="<<area(l)<<endl;
cout<<"Calculating area of rectangle:"<<endl;
cout<<"Enter length and breadth of rectangle:"<<endl;
cinz=1s=h;
cout<<"Area of rectangle="<<area(l,b)<<endl;
cout<<"Calculating area of circle:"<<endl;
cout<<"Enter radius of circle:"<<endl;
cins>r;
cout<<"Area of circle="<<area(r)<<endl;
getch();
return (; Output:
} iWCalculating area of sguare:
int area(int x) Enter zide of sgaure:
{ irea of sguare=16
return (x*x); iCalculating area of rectangle:
}
int area(int x,int y) B oo of sectangle=3n
{ Calculat ir_lg area |:_|f circle:
return {x:ky); F I'-IEBP radiue of circle:
| irea of civrcle=19_625
float area(float radius)
{

return (3. 14%*radius*radius);

¥ A function call first matches the prototype having same number and type of arguments and then calls the appropriate
function for execution. A best match must be unique. The function selection involves the following steps:

o]

&)

The compiler first tries to find an exact match in which the types of actual arguments are the same, and use
that function.
If an exact match is not found, the compiler uses the integral promotions to the actual arguments to find a
match. such as

char to int

float to double
When: either of them fails, the compiler tries to use the built-in conversions (the implicit assignment
conversions) to the actual arguments and then uses the function whose match is unique. If the conversion is
possible to have multiple matches. then the compiler will generate an error message. Suppose we use the
following two functions:

long square(long n)

double square(double x)
A function call such as

square(10)
Will cause an error because int argument can be converted to either long or double, thereby creating an
ambiguous situation as to which version of square() should be used.
If all of the steps fail, then the compiler will try the user-defined conversion with integral promotions and
built-in conversion to find a unique match. User-defined conversions are often used in handling class objects.

. __|
Compiled by: - Naresh Prasad Das Page 84

Object Oriented Programming in C++ | Unit-5

5.4 Operator Overloading
¥ Operator overloading is one of the feature of C++ language. The concept by which we can give special meaning to an
operator of C++ language is known as operator overloading.
¥ For example, + operator in C++ work only with basic type like int and float means c=a+b is calculated by compiler if
a. b and c are basic types, suppose a, b and ¢ are objects of user defined class, compiler give error. However, using
operator overloading we can make this statement legal even if a. b and ¢ are objects of class.
¥ Actually, when we write statement c=a+b (and suppose a, b and c are objects of class), the compiler call a member
function of class. If a. b and ¢ are basic type then compiler calculates a+b and assigns that to c.
¥ When an operator is overloaded, that operator loses none of its original meaning. Instead, it gains additional meaning
relative to the class for which it is defined.
¥ We can overload all the C++ operators except the following:
o Scope resolution operator (: 1)
o Membership operator (.)
o Size of operator (sizeof)
o Conditional operator (7 1)
o Pointer to member operator (.¥)

Declaration of Operator Overloading:
The declaration of operator overloading is done with the help of a special function: called operator function. The
operator is keyword in C++. The general syntax of operator function is:

retum_type operator op (arg list)
{
function body

}

retum_type classname: : opetator op (arg list)

{
{/ function body

}
Where return_type is the type of value retumed, operator is keyword. OP is the operator (+, -, *, etc) of C++ which is
being overloaded as well as function name and arg list is argument passed to function.

¥ For Example:

void operator++()
{
body of function
;
In above example there is no argument. The above function is called operator function. When we write object with
above written operator (++), the operator function is called i.e. when we write

obj ++;

The-above function is called and executed (where obj is an object of class in which above function is written).
¥ _Note'that operator function must be either member function (non static) of friend function.
Operator Overloading Restrictions
o Theprecedence of the operator cannot be changed.
o The number of operands that an operator takes cannot be altered.

The process of overloading involves the following steps:

o Create a class that defines the data types that is to be used in the overloading operation.
o Declare the operator function operator op() in the public part of the class.
o Define the operator function to implement the required operation.
Overloaded operator function can be invoked using expression such as:-
op x or x op for unary operators (e.g. ++X or X++)
x op vy for binary operator(e.g. x+y)

Compiled by: - Maresh Prasad Das Page 85

Object Oriented Programming in C++ | Unit-5
L]

5.5 Overloading Unary and Binary Operators:
¥ Operator overloading is done through operator function. The operator function must be either a non-static or friend

function of a class. Most important difference between a member function and friend function is that a friend function
will have only one argument for unary operators and two for binary operators, while a member function will have no
arguments for unary operators. The reason is object used to invoke the member function is passed implicitly and thus
it is available for the member function. In other word, member function can always access the particular object for
which they have been called.
Tvpes of Operator Overloading:
There are two types of operator overloading:

1. Unary operator overloading

2. Binary operator overloading

5.5.1 Unary Operator Overloading
¥ As we know, an unary operator acts on only one operand. Examples of unary operators are the increment and
decrement operators ++, -- and -
¥ When overloading of unary operator using member operator function no arguments is used
¥ Consider incrementing of one object of num class,operator function will look like this
void operator++();
¥ Member function can be called by object, n is object that calls the operator member function and called using no
argument i.e only object n's value changes.
++n; where n is only one operand

Example 5-2:
#include<iostream:=
#include<conio.h>
using namespace std;
class num{

int x;
public:
void getdata()
{
cout<<"Enter a number:":
cins=x
}
void display();

void operator=();
b
void num:display()
{

cout<<x="<<x<<endl;

|

void num:operator-()

{
X=-X;

}

int main{)

{
num n;
n.getdatal):
n.display();
n.operator-(); f-n; Output:
n.display(): E
getch();
return (0

Compiled by: - Naresh Prasad Das Page 86

Object Oriented Programming in C++ | Unit-5

Example 5-3: Write a program which reads a complex number increment real and imag part then print.
#include<iostrean
#tinclude<conio.h>
using namespace std;
class complex

{
int real.imag;
public:
void getdata()
{
cout<<"Enter real part:";
cin>>real;
cout<<"Enter imag part:";
cin>>imag:
}
void display()
{

cout<<real<<"+i"<<imag<<endl;

}

void operator++()
{
++real;
++imag;

b

int main()

{
complex cl;
cout<<"Enter complex numbgr:<<end};
cl.getdata();
cout<<"Number before increment:";
cl.display();

++cl: Output:
cout<<"NUmber after increment;”; Fnter complex number:
cl.display(); FEnter peal part:2

playl) Enter imag part:3
getch(); Mumber hefore increment:-2+i3

return 0 MUmher after increment:3+id

¥ Within main() ‘when we write ++¢1 or ¢l4++ the member function operator++ () is called and executed. Actually
compiler check theel if this is basic type like int, the compiler increment that but if ¢l is object of a class compiler
executea member function operator ++.
¥ Note thatwithin the body of operator function. We can write anything. But generally the statements written which
match with the meaning of operator which we want to overload, in above case the operator is ++ and operator function
15 operator ++().
¥ In above example 5.3 we cannot write the following statement:
c2 =++cl;
Where ¢2 and ¢l both are object of class complex because the return type of operator ++() function is void.
¥ This type of problem will not come if ¢l and ¢2 are basic type. But if ¢l and ¢2 are object then ++¢1 must return a
value which is assigned to object ¢2. We can solve this problem by changing the return type of operator ++() function.
Example 5-4:
#tinclude<iostream:
#include<conio.h>
using namespace std;

Compiled by: - Naresh Prasad Das Page 87

Object Oriented Programming in C++ | Unit-5

class complex

{
int real.imag;
public:
void getdata()
{
cout<<"Enter real part:";
cin>>real;
cout<<"Enter imag part:";
cin>>imag:
}
void display()
{
cout<<real<<"+"<<imag<<endl;
}
complex operator++()
{
complex temp;
temp.real=++real;
temp.imag=++imag;
return temp;
}
b
int main{)
{

complex cl.c2;

cout<<"Enter complex number:"<<end};
cl.getdata();

cout<<"Number before increment:";
cl.display():

c2=++cl;

cout<<"NUmber after increment: ™
c2.display():

getch();

return (;

I

Limitation of above incremente erloaded operator
* In above example 5-4. there is no difference between following two statements:
1. “e2.=++cl;
2. c2=cl4++;

If we write these in main(). Both first increment the data member of ¢1 and then assign to data member of c2. i.e. the
prefix and postfix cannot be differentiated by the above example 54.

¥ But.in current version of turbo C++ and Borland C4+, there is a facility by which we can differentiate prefix and
postfix by changing the header of operator function like
1. operator++) {/does prefix
2. operator++(int) {/does postfix

the 2. Declaration uses a dummy int argument which is set to zero by the postfix ++operator. This extra argument
allows the compiler to distinguish the two forms.

¥ Similarly this concept is applied for decrement operator (- -)
1. Operator--() {/does prefix
2. Operator--(int) {/does postfix

|
Compiled by: - Maresh Prasad Das Page 88

Object Oriented Programming in C++ | Unit-5

Example 5-5: Like ++, unary operator — and unary - can be overloaded

#include<iostream=
#include<conio.h>
using namespace std;
class counter
{
int count;
public:
counter{)
{
count=5;

}

void operator++(int) ffoverloaded ++ operator

{
count++;
}
void operator--() /foverloaded -- operator
{
--count;

}
void operator-() ffoverloaded ++ operator
{
count=-count;
}
void showdata()
{
cout<<"count="<=zcount<<endl;
}
¥
int main()
{
counter c1,¢2.¢3:
cl++;
--c2:
-c3;
cl.showdata();
c2.showdata();
c3.showdata();
getch();
return (0

5.5.2 - Overloading Binary Operator
Binary operator means operator which have two operands i.e +,-,%/. %
This takes two operands while overloading. For example c=a+b where a and b are two operands.
When overloading of binary operator using member operator function one argument is necessary.
Consider addition of two objects of complex class ¢3=c1+c2;operator function will look like this
complex operator+(cormplex ¢2)
Member function can be called by object ¢l is object that calls the operator member function and called using one
argument i.e c2 and the result is retumed to c3.

YV VY

Overloading of Arithmetic Operator:

¥ Overloading of binary + operator is as follows:

Compiled by: - Naresh Prasad Das Page 89

Object Oriented Programming in C++ | Unit-5

Example 5-6: This add two complex number
#include<iostrean
#tinclude<conio.h>
using namespace std;
class complex

{
int real.imag;
public:
complex(){ }
complex(int x.int y)
{
real=x;
imag=y;
}
void display()
{
cout<<real<<"+"<<imag<<endl:
}
complex operator+(complex c)
{
complex temp;
temp.real=real+c.real;
temp.imag=imag+c.imag;
return temp;
}
1
int main{)
{
complex ¢1(2.3),¢2(4,5).c3;
cout<<"First complex number:";
cl.display():
cout<<"Second complex number:";
c2.display():
c3=cl+c2;
cout<<"Resultant complex number:"; Output:
c3.display(); Fr‘s cumpex number:2+1i3
getch(); iSecond complex number:4+i5
returh 0: Resultant complex number:6+i8
}

¥ In above example 5-6, when statement e3=cl+¢2 is executed the operator function is called. The operator function is
called by object cl*and object ¢2 is passed as argument to operator function i.e. the ¢2 object is copied into object ¢
which is writtenin the header of operator function.
¥ Inside the‘operator function, temp.real = real + c.real; calculate the sum of real member of object ¢l and object ¢2
and assign this to real of temp object.
¥ Similarly the statement temp.imag = imag+c.imag; is calculated.
¥ The temp object is returned to object ¢3.
Note: The *, / and other binary operator are overloaded like + operator. For example the operator function for * is as follows:
complex operator¥(complex ¢)
‘ complex temp;
temp real=real*c.real-imag *c.imag;
lemp imag=real*c imag+imag®c real;
e lum Lemp;
i
This perform multiplication of two complex numbers. Within main() we call this like
3 =cl*e2;
L |

Compiled by: - Naresh Prasad Das Page 90

Object Oriented Programming in C++ | Unit-5

Example 5-7: Write a program which concatenates two strings by operator overloading
#include<iostrean

#tinclude<conio.h>
#include<string.h>
using namespace std;

class str
{
char s[50];
public:
void getdata()
{
cin>>s;
}
void showdata()
{
cout<<"String is:"<<s<<endl;
}
str operator+{str x)
{
str temp;
strepy(temp.s,s);
strcat{temp.s,X.s);
return temp;
}
b
int main()
{

strsl,s2.53:

cout<<"Enter first string:";

s1.getdata();

cout<<"Enter second string:”;

s2.getdata();

s3=s1+4s2; Output:
cout<<"concatenated string: "<<endl; BEncer £ YT string:zhello
s3.showdata(); fEnter second string:world
getch(); fconcatenated string:

Botring disthelloworld

return 0:

|

Overloading of Comparison Operator
¥ The comparison operator can also be overloaded like arithmetic but comparison operator return true or false, therefore
we have to use enumerated data types.

Example 5-8: Overloading of < (less than) operator
#include<iostream:=
#include<conio.h>
using namespace std;
class sample

{
int n;
public:
sample()
{
n=(
}

sample(int x)

Compiled by: - Naresh Prasad Das Page 21

Object Oriented Programming in C++ | Unit-5

{
n=x;
}
void display()
{
cout<<n<<endl;
}
bool operator<(sample s)
{
if(n<s.n)
return (true);
else
return (false);
}
‘}; .
int maing)
{
sample s1;
sample s2(5);
sample s3(7);
cout<<"Member of s1 is:";
s1.display();
cout<<"Member of s2 is:";
s2.display();
cout<<"Member of s3 is:";
s3.display();
if(s1<s2)
cout<<"s1 is less than 52"<<endl;
else
cout<<"s1 is not less than's2"<<endl;
ifi(s3<s2)
cout<<"s3 is less than 52"<<endl: i
of 23 ds:=7
else less than =2
coute<"s3 isnot less than s2"<<endl: =31 is not less than s2
getch();
return (;
}

Overloading of Assienment Operator
¥ We can overload assignient operator =, +=, =, *=, /=e¢tc.

Example 5-9: Overloading of = and += operator

#inelude<ipstreams
#include<conio.h>
using namespace std;
class sample

{
int n;
public:
sample()
{
n=0;
}
sample(int x)
{
n=x;
}

Compiled by: - Naresh Prasad Das Page 92

Object Oriented Programming in C++ | Unit-5

void display()
{
cout<<n<<endl;
}
void operator=(sample s) /foverloaded = operator
{
n=s.n;
}
void operator+=(sample p) {foverloaded += operator
{
n=n+p.n;
}
b
int main({)
{
sample s1;
sample s2(10):
sample s3(15):
cout<<"Member of sl is:";
s1.display():
cout<<"Member of s2 is:";
s2.display();
cout<<"Member of s3 is:";
s3.display():
sl=s2; fealling overloaded = operator
s24=s3; {fcalling overloaded += operator
cout<<"After calling overloaded operator function"<<endl;
cout<<"Member of sl is:";
s1.display();
cout<<"Member of s2 is;"; Output:
s2.display(); ember of =1 i=:@
" L e ember of =2 iz:108
cou[:r::«r: Member of 3 1s:": py TP e
s3.display(); After calling overloaded operator function
gclch{)' ember of s1 :i_s:il]
2 Member of s2 is:25
return (; Member of =3 i=:ib
}

5.6 Operator Overloading using a Friend Function
¥ When the overloaded operator function is a friend function, it takes two arguments for binary operator and takes one
argument forthe unary operator

Example 5-10: Overloading unary operator using friend function

#include<iostream=>
#include<conio.h>
using namespace std;
class counter

{
int count;
public:
counter)
{
count=5;
}

Compiled by: - Naresh Prasad Das Page 93

Object Oriented Programming in C++ | Unit-5

void showdata()

{
cout<<"count="<<count<<endl;
}
friend void operator++(counter &.int): /fpostfix ++ operator overloading
friend void operator--(counter &), {fprefix — operator overloading

friend void operator-(counter &);

void operator++({counter &p.int)

{

p.count=p.count+1;

}

void operator--{counter &q)

{

g.count=g.count-1;
}
void operator-(counter &r)
{

r.count=-r.count;

}

int main()

{
counter cl,¢c2,c3;
cl++;
-—c2:
<3
cl.showdata();
c2.showdata();
c3.showdata();
getch();
returnit);

I

Example 5-11: Overloading binary + operator using friend function
#include<iostream>
#include<conio:h>
using namespace std;
class complex
{
intreal.imag;
public:
complex(){ 1
complex(int x.int y)

{
real=x;
imag=y:
}
void display()
{

cout<<real<<"+"<<imag<<endl;

}

friend complex operator+(complex.complex);
I
L |

Compiled by: - Naresh Prasad Das Page 94

Object Oriented Programming in C++ | Unit-5

complex operator+(complex a,complex c)
{
complex temp;
temp.real=a.real+c.real;
temp.imag=a.imag+c.imag:
return temp;

int main({)

{
complex ¢1(2.3).¢2(4.5).c3;
cout<<"First complex number:";
cl.display();
cout<<"Second complex number:";

c2.display();

c3=cl+c2;

cout<<"Resultant complex number:”;

c3.display(); Output:

getch(); First cnmpiex numher:2 +i3
return 0; econd complex numbepr=4+i5

Hesultant complex number:G+id

5.7 Rules for Operator Overloading in C++
Only existing operators can be overloaded. New operators cannot be created.

The overloaded operator must have at least one operand that is.of user defined type.

Overloaded operators follow the syntax rules of the original operators. They cannot be overridden.
There are some operators that cannot be overloaded.

sizeof | Size of Operator
Membership Operator

g Pointer-to-member Operator
- Scope resolution Opetator
i Conditional Operator

ol

5. We cannot use “friend” functions to overload certain operators. However, member function can be used to overload
them.

= Assignment Operator
() Funetion call Operator
[Subscripting Operator
->] Class member access Operator

6. Unary operators, overloaded by means of a member function, take no explicit arguments and return no explicit values,
but, those overloaded by means of a friend function, take one reference argument (the object of the relevant class).

7. Binary operators overloaded through a member function take one explicit argument and those which are overloaded
through afriend function take two explicit arguments.

8. When using binary operators overloaded through a member function, the left hand operand must be an object of the
relevant class.

9. Bindry arithmetic operators such as +.-.* and / must explicitly return a value. They must not attempt to change their
own arguments.

Compiled by: - Naresh Prasad Das Page 95

Object Oriented Programming in C++ | Unit-5

5.8 Type Conversions
¥ In C++ by assignment statement we can do automatic type conversion for basic data type. Compiler automatically
convert from one type to another type by applying type conversion rule provided by compiler.
¥ For example
int x;
float y=3.14;
X=y;
In above example, we are assigning the value of variable y to variable x. To achieve this, the compiler first converts y
into integer and then assign it to x.
¥ But the compiler does not support automatic (standard) conversion for the user-defined data types like classes. For
this, we need to design our own data conversion routines. There are 3 types of data conversion available for user
defined classes:
1. Conversion from basic type to class type
2. Conversion from class type to basic type
3. Conversion from one class type to another class type

5.8.1 Conversion from Basic to Class type

Basic data type i.e. int, float etc. To object of aclass.

Have to use one default and one parameterized constructor

In this type left hand operand of =(equality sign) is class type (object) and right hand operand is basic type (int.float)
Argument of constructor can be changed according to basic type, if int to object argument is int and if float to object
argument is float and if int and float is converting in one program you-can have float as an argument.

¥ The constructor used for type conversion takes a single argument:whose type is to be converted.

L A A o

Example 5-12:
#include<iostreams
#include<conio.h>
using namespace std;

class dist{
int feet;
float inches;
public:
dist(float mtr)
{
float F:
f=mtr*3.28; /11 meter=3.28fect({ Approx)
feet=f;

inches=12%(f-feet); /I 1 feet=12inches
}

void showdata()

{
cout<<feet<<"V "<<inches<<"\""<<endl;
}
b
int main()
{
float m;
cout<<"Enter distance in meter;";
cin==>m;
dist d=m; /fthis call constructor which convert float to class type data
cout<<"Distance is:";
d.showdata(); Output:
getch(); ' -

,Enter distance in metewr: 2.3
return

Diztance js:=?" 6.5ZR"

Compiled by: - Naresh Prasad Das Page 96

5.8.2

»
®

Object Oriented Programming in C++ | Unit-5

Conversion from Class to Basic type

Object of class i.e user defined data type to basic data type i.e. int,float etc..

Use technique called type cast operator (casting operator function)

In this type Left Hand Operand of = {equality sign) is basic type (int.float) and Right Hand Operand is a class
type(object).

By the constructor we cannot convert class to basic type. For converting class type to basic type we can define a
overloaded casting operator in C++. The general format of an overloaded casting operator function is:

operator typename()

{
Function body

}

In above declaration operator is keyword and typename is basic type i.e. float, int etc.

Conversion function shouldn't have any arguments or retumn value.
It should be a member function

Example 5-13:

#include<iostream>
#include<conio.h>
using namespace std;
class dist

{
int feet;
float inches;
public:
dist{int f, float i)
{
feet=f;
inches=i:
}
void showdata()
{
coute<feet<<"\ "<<inches<<"\""<<endl;
}
operator float()
{
float ft;
ft=inches/12;
ft=ft+feet;
return (ft/3.28);
}
b
int tain()
{
dist d(7.6.528);
float m=d;
cout<<"Distance in feet and inches:";
d.showdatal);
cout<<"Distance in meter:"<<m;
getch(); Output:
return (; gtance -. eet an c}eg:
! PDiztance in meter:=2 .3

¥ Inexample 5-13, the following function converts class type to basic type:

Compiled by: - Naresh Prasad Das

Page 97

Object Oriented Programming in C++ | Unit-5

operator float()

{
float ft;
ft=inches/12;
ft=ft+feet;

return (ft/3.28);
}

» When we write float m = d; in main (); above function is called, which take feet and inches of dist d and return a
float type data.

5.8.3 Conversion from One class type another class type
¥ We can convert one class(object) to another class type as follows:
object of A= object of B
A and B both are different type of classes. The conversion takes place from class B to Class A, therefore, B is source
class and A is destination class.
¥ Class type one to another class can be converted by following way:
o By constructor
o By conversion function, i.e. the overloaded casting operator function.

BY Constructor:
When the conversion routine is in destination class, it is commonly implemented as constructor

Example 5-14: Converts polar coordinate to rec coordinate

#include<iostream>
#include<conio.h>
#include<math. h>
using namespace std;

class polar
{
float rd;
float ang;
public:
polart)
{
rd=0.0;ang=0.0;
}
polar(float r, float a)
{
rd=r; ang=a;
}
float getrd()
{
return (rd);
}
float getang()
{

return (ang);

}
void showpolar()

{

cout<<rd<<", "<<ang<<end!;
}
b
]

Compiled by: - Maresh Prasad Das Page 98

Object Oriented Programming in C++ | Unit-5

class rec
{
float x.y:
public:
rec()
{

E

x=0.0:y=0.0:
}

rec(float xco, float yco)

{
X=XCO; Y=YCO;
}

void showrec()

int main()

{

I

{
cout<<x<<", "<<y<<endl:
}
rec(polar p)
{
float r=p. getrd();
float a=p.getang();
x=r*cos(a);
y=r*sin(a);
}
recrl;
polar p1(2.0.45.0);
rl=pl; {/fconvert polar to rec by calling one argument constructor

cout<<"Polar coordinate;';

pl.showpolar();

cout<<"rec coardinate:”; Output:
rl.showrec(); ' Ate=?,
getch();
return (;

iPo lar coordinate: 2.
frec coordinate:1.85864. 1.78181

¥ Inexample 5-14;:the following constructor converts polar class type to rec class type

rec(polar p)
{
float r=p.getrd();
float a=p.getang();
x=r*cos(a);
y=r*sin(a);
}

In this constructor object of polar class p is passed as an argument.
¥ Within polar class rd and ang are private data we cannot access these outside the class, therefore getrd() and
getang() function are written within polar class by using these function, We can get rd and ang. By following ways:

p-getrd();
p-getang();

¥ The statement rl= pl; called one argument constructor of class rec.

. ___|
Compiled by: - Naresh Prasad Das Page 99

Object Oriented Programming in C++ | Unit-5

Bv conversion function
When conversion routine is in source class, it is implemented as a conversion function.

Example 5-15: Converts polar coordinate to rec coordinate

#include<iostreams
#include<conio. h>
#include<math. h>

using namespace std;

classrec
{
float x.y:
public:
rec()
{
x=0.0:y=0.0;
}
rec(float xco, float yco)
{
X=XCO0; Y=YCO;
}
void showrec()
{
cout<<x<<", "<<y<<endl;
}
b
class polar
{
float rd;
float ang;
public:
polar()
{
rd=0.0:ang=0.0:
}
polar(float.r. float a)
{
rd=r; ang=a;
}
void showpolar()
{
cout<<rd<<", "<<ang<<end!;
}
operator rec()
{
float x I=rd*cos(ang);
float y I=rd*sin(ang);
return rec(x1,y1);
}
b
int main{)
{
recrl;
polar p1(2.0.45.0);
rl=pl; /fconvert polar to rec by calling conversion function

Compiled by: - Maresh Prasad Das Page 100

Object Oriented Programming in C++ | Unit-5

cout<<"Polar coordinate:;”;
pl.showpolar(),
cout<<"rec coordinate:”;
rl.showrec();
getch(): Output:
return (; BPolar coordinate:2, 45
rec coordinate:1.A5864, 1_7A181

¥ Inexample 5-15, the conversion function is written in class polar, which is source class, when we write the following
statement rl=pl; This is called the conversion function
operator rec()
{
float x 1=rd*cos(ang);
float y 1=rd*sin(ang):
return rec{x1,y1);

!

This function uses the rd and ang of p1 and return an object of rec type class torl,

¥® In above function return rec(x1, y1); create a temporary object and assign the:data member of that by value x1 and y1.

5.9 Virtual Function
¥ Virtual means existing in effect but not in reality. A function is declargéd virtual by writing keyword *virtual” in front
of function header. A virtual function uses a single pointer to base class pointer to refer to all the derived objects.
Virtual functions are useful when we have number of objects of different classes but want to put them all on a single
list and perform operation on them using same function call.
¥ When we use the same function name in both the base and derived classes, the function in base class declared as virtual
function. The virtual function is invoked at run time based on the type of pointer.
o When function is made virtual, C++ determines that which function is used to at run time based on type of
object pointed on base pointer.
o Virtual function concept is used invinheritance when function having same name and with equal arguments in
base class as well as in derived class:
o The function is declared-using virtual keyword.
o The function which is access by pointer object having same name in both base and derived class is called
virtual function.
o The object of different class can respond to same message in different forms we can access the function by
using object which is declared as single pointer variable. The pointer variable is called polymorphic variable

Example 5-16: When a base and derived classes have same functions with same name and these are accessed using
pointers but without using virtual functions.

#include<iostream=
#include<conio.h>
using namespace std;
class B
{
public:
void show()
{
cout<<"This is in class B"<<endl;
}
b
class D1:public B
{
public:
void show()

Compiled by: - Naresh Prasad Das Page 101

Object Oriented Programming in C++ | Unit-5

Y VY

{
cout<<"This is in class D1"<<endl;
}
b
class D2:public B
{
public:
void show()
{
cout<<"This is in class D2"<<endl;
}
b
int main()
{
B *p;
B obj;
D1 objl;
D2 obj2;
p=&obij;
p-=show();
p=&objl:
p-=show();
p=&obj2;
p-=show(); Output:
getch(); IThis i class B

return (; is is in class B
| This is in class B

In example 5-16, p is pointer of base class type: Base pointer is compatible to its drive classes. Therefore the statement
p = &objl;
p = &obj2 are correct.
The output of above program is same: That means the p->show(); statement execute every time the show function
which is in class B.
When we assign address of obj to p'by statement p = &obj; then function of class B is called by the statement
p->show() because obj is-object of class B.
But when we assign address of objl to p then p->show(); statement again called the function show() of class B while
objl is object of class D1 because in class D1 there are two functions both have name show(), one is inherited from
class B and seond is'its own: The p pointer is actually pointer of B type by the declaration B *p;
The C++ compiler ignores the content of p (which is address of objl after statement p = &objl) and execute function
which is inherited:from class B because the type of p matches with class B.
Similarly after stateiment p = &ohj2; and p ->show() compiler again executes the function which is inherited from
class B:
Whenever this type of situation occurs i.e. in derived class there are two functions both have same name, one is
inherited from base, second is its own, and pointer is base type. Then if we want to execute the function through pointer
campilér chose the function of base (i.e. which is inherited from base). But when this situation does not occur compiler
executes the function of derive class because base type pointer is compatible with the derived class.
If we want to execute the function of derived class in example 5-16 that is possible in C++ by virtual function concept.
If in example 5-16, we make the function show() of base B as virtual function then the output of program is different.
When a function is made virtual, C++ compiler determines which function to use at run time based on the content of
base pointer rather than the type of pointer. (i.e. if base pointer has address of derived class objects then that executes
the function of derived).
Note that if base pointer contains the address of a derived class objects then that is called objects point to by base
pointer.

Compiled by: - Naresh Prasad Das Page 102

Object Oriented Programming in C++ | Unit-5

Example 5-17: With use of virtual function
#include<iostream>
#include<conio.h>
using namespace std;
class B
{

public:
virtual void show{)
{
cout<<"This is in class B"<<endl;
}
¥
class D1:public B
{
public:
void show()
{
cout<<"This is in class D1"<<endl;
}
b
class D2:public B
{
public:
void show()
{
cout<<"This is in class D2"<<endl:
}
b
int main()
{
B *p;
B obj;
D1 objl:
D2 obj2;
p=&obj;
p-=show():
p=&objl;
p->show();
p=&obj2;
p==show();

getch(); IThis is in class D1
e fThiz is in class D2

}
¥ In above example 5-17, the member function of class B {i.e. show() } is virtual function, therefore the output of the
program is different from example 5-16.

5.9.1 Rules for Virtual Functions

When virtual functions are created for implementing late binding, we should observe some basic rules that satisfy the
compiler requirements:

A virtual function must be a member of certain class.

Such function cannot be a static member. But it can be a friend of another class.
A virtual function is accessed by using object pointer.

A virtual function must be defined, even though it may not be used.

e =

Compiled by: - Naresh Prasad Das Page 103

Object Oriented Programming in C++ | Unit-5

5. The prototypes of the virtual in the base class and the corresponding member function in the derived class
must be same. If not same, then C++ treats them as overloaded functions (having same name, different
arguments) thereby the virtual function mechanism is ignored.

6. The base pointer can point to any type of the derived object, but vice-versa is not true i.e. the pointer to derived
class object cannot be used to point the base class object.

7. Incrementing or decrementing the base class pointer (pointing derived object) will not make it point to the
next object of derived class object.

8. Ifa virtual function is defined in the base class, it is not compulsory to redefine it in the derived class. In such
case, the calls will invoke base class function.

9. There cannot be virtual constructors in a class but there can be virtual destructors.

5.10 Pure Virtual Function

¥ A pure virtual function is a virtual function with no function body

¥ We know that in general we declare a function virtual inside the base class and redefine it in‘derived ¢lass. But the
function defined inside the base class is seldom (rarely) used for performing any task.

¥ These functions only serve as a placeholder .Such functions are called do-nothing functions or dummy function or
deferred method.

¥ Itis always virtual function. uses keyword virtual

® Syntax:

vitual return_type function_name()=0;

¥ Can't be used for any operation

¥ Can't create object of class when there is pure virtual function.

¥ The class containing pure virtual function is called abstract class or pure abstract class.

Example 5-18:

#include<iostream>
#include<conio. h>
using namespace std;
class B
{

public:

virtual void show()=0; {/pure virtual function

b
class D1:public B

{
public;
void show()
{
cout<<"This is in class D1"<<endl;
}
1
class D2:public B
{
public:
void show()
{
cout<<"This is in class D2"<<endl;
}
b
int main()
{
B *p[2];
D1 objl;
D2 obj2;

|
Compiled by: - Maresh Prasad Das Page 104

Object Oriented Programming in C++ | Unit-5

pl0]=&obijl:
pl1]=&obj2;
pl[0]-=show(); Output:

pl1]->show(); This is in class D1
getch(); fThis is in class D2

return (0

i

5.11 Ohject Pointer

Object also have address in memory

Object pointer stores address of specified object

It can point to specified object

Declaration syntax: class_name *pointer_object

Binding syntax: pointer_object=& ohject

Instead of dot operator for calling member function pointer uses (->) operator.

YV VY Y Y Y

Example 5-19:

#include<iostream>
#include<conio.h>
using namespace std;
class student

{
int rmn;
char name[50];
public:
void getdata()
{
cout<<"Enter roll:":
cim=>rn;
cout<<"Enter name:";
cin=>name:
}
void showdata()
{
cout<<"Name:"<<name<<endl;
cout<<"Roll:"<<rn<<endl;
}
s
int main()
{
student s;
student *p;
p=&s: /fmow p points to s

p->getdata();
p-=>showdata();
getch();

return (0

Fnter »oll:-325
FEnter name:pam

Compiled by: - Naresh Prasad Das Page 105

Object Oriented Programming in C++ | Unit-5

5.12 This Pointer
¥ In C++, this is a keyword. this represents an object that invokes a member function.
¥ Whenever any object called its member function this pointer is automatically set and contains the address of that

object. The pointer acts as an implicit argument to all the member function.
¥ For example:

class sample

{
float a;
int b

b
The private member a and b can be used directly inside any member function as follows:

a=35.5;
b=10;
We can also use the following statement inside any member function of sample.
this->a=5.5;
this->b =110;
¥ One important application of this is to return the object, it points to as follwos:
return *this;

Characteristics:
1. this pointer stores the address of the class instance, to enable pointer access of the member functions of the class.
2. this pointer is not counted for calculating the size of the object
3. this pointer is not accessible for static member functions.
4. this pointer are not modifiable.

Example 5-20:

#include<iostream>
#include<conio.h>
#include<string.h>
using namespace std;
class person
{
float age:
char name[50];
public:
person(){ }
person(char *s.float x)
{
strepy(name,s);
age=x;
}
person & greater(person &);
void display();

person & person::greater(person &p)
{
if(p.age>age)
return p;
clse
return *this;

}

Compiled by: - Maresh Prasad Das Page 106

Object Oriented Programming in C++ | Unit-5

void person::display()

{
cout<<"Name;"<<name<<endl;
cout<<"Age:"<<age<<endl:

int main()
{
person pl("Ram",22.5);
person p2("Hari",21.25);
person p3("ganesh",25.0);
person p;
p=pl.greater(p2);
cout<<"Elder person in pl and p2 is:"<<endl;
p.display():
p=pl.greater(p3);
cout<<"Elder person in pl and p3 is:"<<endl;
p.display():
getch();
return (;

Qutput:

lder person in pl and p2 is:
ame = Ram
Nge =22 .5
lder person in pl and p3 is:

MHame iganesh
fige = 2%

. __|
Compiled by: - Naresh Prasad Das Page 107

Object Oriented Programming in C++ | Unit-6

6 Template and generic Programming

6.1 Generic and Templates
¥ Generic is a new concept which enables us to define generic classes and functions and thus provides support for generic
programming. Generic programming is an approach where generic types are used as parameter in algorithm so that
they work for a variety of suitable data types and data structure. In C++ generic programming is achieved by the means
of template.
¥ Template is one of the important features of C++ which enables us to define generic (generalized) classes and function.
¥ A template in C++ can be used to create a family of classes or functions. e.g.: A class template for an array of various
data types such as int array and float array. Similarly, we can define a template for a function, say mul();:that would
help us create various versions of mul{)for multiplying int.float and double type values.
¥ A template can be considered as a macro which helps to create a family of classes or functions. When an object of a
specific type is defined for actual use, the template definition for that class is substituted with the required data type.
Since a template is defined with a parameter that would be replaced by a specified data type at the time:of actual use
of the class or function, the templates are sometimes called parameterized classes or functions.
¥ There are two types of templates:
o Function Templates
o Class Templates

6.2 Class Templates
¥ Class template is one of the kinds of template that helps us to create generic classes: It is a simple process to create a
generic class using a template with an anonymous type. The general syntax of a class template is:

template <class T>

class class name

{
/---
/f class member specification
/l with anonymous type T
/! wherever appropriate
fM-=---

I
This syntax shows that the class template definition is very similar to an ordinary class definition except the use of

prefix template <class T> & useof type T. These tell the compiler that we are going to declare a template and use “T”
as a type name in the declaration. "This T can be replaced by any built-in data type (int, float, char, etc) or a user-

defined data type.
¥ Body of member functiGnis written Outside the class as follows:
template<class T>
return_type class_name <T>::function_name(arg)
{
//body of function
}

¥ The syntax for defining an object of template class is:
class_name<data type> object_name(arg);

The arg are used when constructor are in template class otherwise skipped. Note that template is keyword in C++

Example 6-1: Write a program which generates a template class, by which we can perform integer type data addition and float
type data addition also.

#include<iostream>
#include<conio.h>
using namespace std;
template<class T>
class add

{

Compiled by: - Maresh Prasad Das Page 108

Object Oriented Programming in C++ | Unit-6
L]

T ab;
public:
void getdata()
{
cout<<"Enter first data:";
cinz>a:
cout<<"Enter second data;";
cin>>b;
}
T sum)
{
Tc:
c=a+b;
return (c);
}
b
int main({)
{
add<int>objl;
add<float=obj2;
cout<<"Enter integer number:"<<end];
objl.getdata();
cout<<"Sum of integer data="<<objl .sum(); Output:
cout<<"nEnter floating type data:"<<endl; fFnter integer numbem:
; . iEnter firct data:iB
Ob_]l,gc.t.dﬂta{)ﬁ‘ . : Enter second datazils
cout<<"Sum of float type data="<<aobj2.sum(); fSum of integer data=25
getch(); iEnter floating type data:
: Enter first data:?.h
return 0 Enter second data:zbh.2
! gfSum of float type data=13_7
Example 6-2:
#include<iostreams>

#include<conio.h>
#define size 3
using namespace:std;
template<class T>
class vegtor
{
T w[size];
public:
vector() 1
vector(T a[])
{
for(int i=0;i<size;i++)
v[i]=alil:
}
T operator*(vector &Yy)
{
T sum =0
for(int i=0;i<size;i++)
sum+=this->v[i]*y.v[i]:
retum sum;

|

. ___|
Compiled by: - Naresh Prasad Das Page 109

Object Oriented Programming in C++ | Unit-6

void display()
{
for(int i=0;i<size;i++)
cout<<v[il<<"t";
}
¥
int main{){
int x[3]={1.2,3};
int y[3]={4.5.6};
vector <int> v1;
vector <int> v2;
vi=x:
v2=y;
int r=v1*v2;
cout<<"vl=";
v1.display();
cout<<"\nv2=";
v2.display():
cout<<"invl *v2="<<r<<endl; Output:
getch(); -1 2
return (;

6.2.1 Class template with multiple parameter
¥ We can use more than one generic data type in a¢lass template: They are declared as a comma separated list within
the template specification.
* Syntax:
template<class T1, class T2,...>
class class_name
{
/body of the class
I

Example 6-3: Two generic data types:in a class definition

#include<iostreams
#include<conioh>

using namespace std;
template<class Tliclass T2>
class'sample

{

T a
T2 b;
public:
sample(T1 x, T2 y)
{
a=x;
b=y;

}

void show()

{

cout<<a<<" and "<<b<<endl:
}
b
|

Compiled by: - Naresh Prasad Das Page 110

Object Oriented Programming in C++ | Unit-6

int main()

{
cout<<"creating object with float and int data types:"<<end];
sample<float,int>51(5.75.4);
cout<<"Data of s1 object is:";
s1.show();
cout<<"creating object with int and char data types:"<<endl;
sample<int,char>s2(7,'N');
cout<<"Data of 52 object is:"; Output:
s2.show(); creating object uwith float and dint data types:
getch(): Data of sl ohject is:=5.Y5 and 4
? creating object with int and char data types:®
return (), Data of s2 ohject is:7? and
|

Example 6-4: Using Default Data types in a class definition
#include<iostream:=
#include<conio.h>
using namespace std;

template<class Tl=int,class T2=int> {/default data types specified as int
class sample

{
Tl a;
T2 b;
public:
sample(T1 x, T2 y)
{
a=x;
b=y:
}
void show()
{
colit<<a<<" and "<<b<<endl;
}
b
int main()
{
sample<float,int>s1(5.75.4);
cout<<"Data of s1 object is:";
51.show();
sample<int,char>s2(7,'N');
cont<<"Data of 52 object is:";
52.show();
sample<>s3(5.75,N'); /fdeclaration of class object without type specification
cout<<"Data of s3 object is:";
s3.show(); Output:

getch(); Data of =1 ohject ic:5.75 and 4
return O Data of =2 object is:7 and W
| 2 Data of =3 object is:5 and 78

¥ The above program declares s3 object without any type specification, thus the default data type for T1 and T2 is
considered as int. The parameter values passed by s3 are type casted to int and displayed as output.

Compiled by: - Naresh Prasad Das Page 111

Object Oriented Programming in C++ | Unit-6

6.3 Function Templates
¥ Similar to class template, the function template will be used to create a family of function with different argument
type.
¥* Function template helps in working with any type of data for the function. Any function argument is accepted by the
function
¥ The general syntax of a function template is
template <class T>
return_type function_name (arguments of type T)

{
sz
/l Body of function
M with type T
/l wherever appropriate
M=----
!

¥ The function template syntax is similar to that of the class template except that we are defining function instead of
classes. We must use the template parameter T as and when necessary in the function body.and its argument list.

Example 6-5:

#include<iostream=
#include<conio.h>
using namespace std;
template <class T>
void swapfun(T &a.T &b)
{
T temp:
temp=a;
a=b;
b=temp;
}
int main()
{
intil,i2;
float £1.12;
cout<<"Enter first integer number:";
cin==il;
cout<<"Enter second integer number:";
cins=i2;
cout<<"Enter first float number:";
cinzs11:
cout<<"Enter second float number:";
cin==12;
cout<<"After swapping the integer number:"<<endl;
swapfun(il.i2),
cout<<"First integer number="<<il<<endl;
cout<<"Second integer number="<<i2<<endl; Output:

cout<<"After swapping the float number:"<<endl; R TIEEE TNCSUCE nunmErT

apfi 5 » second _integer number:?

SW"ip‘l‘u::l{fl._f'Z}& . first float number:4.5

cout<<"First float number="<<fl<<endl; E second float number:2.6
» swapping the integer number:

cout<<"Second float number="<<f2<<endl; irst integer numher=7
. Becvuond inleyer nunber-5

gCtChU, After swapping the float number:
5 Fiwvet float numbewr=2_6

return (% Second flocat number=4.5

Compiled by: - Naresh Prasad Das Page 112

Object Oriented Programming in C++ | Unit-6

6.3.1 Function Template with multiple parameter

¥ Similar to template classes, we can use more than one generic data type in the template statement using a comma-
separated list as shown below:

template<class T1, dass T2, ...>
return_type function_name(arguments of types T1,T2,)

: {/Body of function
}
Example 6-6:
#include<iostream>

#include<conio.h>
using namespace std;
template<class T1, class T2>
void display(T1 x, T2 y)
{
cout<<x<<" and "<<y<<endl;

I

int main()

{

cout<<"calling function template with int and character data"<<endl;

display(5,'N");

cout<<"calling function template with float and int data"<<end];

display(10.5.7):

getch(); Output:

return () "-allénﬁ function template with int and character data
] D an

icalling function template with float and int data

0.5 and 7

6.3.2 Overloading of Template Functions
¥ A template function may be overloaded either by template function or ordinary function of its name. In such cases, the
overloading resolution is accomplished as follows:
1. Call an ordinary functiot that has an exact match.
2. Call a templatefunction that could be created with an exact match.
3. Try normal overloading resolution to ordinary functions and call the one that matches.

»> Anerroris generated if no match is found. Note that no automatic conversions are applied to arguments on the template
functions.

Example 6-7:

#include<iostream>
#include<conio.h>
using namespace std;
template<class T>
void display(T x)
{
cout<<"Template display:"<<x<<endl;

}

template<class T1, class T2>
void display(T1 m. T2 n)

{

cout<<"Template display:"<<m<<" and "<<n<<endl;

|

Compiled by: - Naresh Prasad Das Page 113

Object Oriented Programming in C++ | Unit-6

void display(int x)
{

cout<<"Explicit display:"<<x<<endl;
I

int main({)

{

display(100);

display(15.5):

display(10.20.6);

display('N"); Output:

getch(); [Excplicat

e) o iayi8 and 20.6
| display:zN

6.4 Non-type Template argument
¥ Template can have multiple arguments. It is also possible to use non-type arguments. That is, in addition to the type

argument T, we can also use other arguments such as built-in type (int, float etc), constant'expression, function name
and strings.

¥ Consider the following example:
template<class T, int size>
class sample

{

T a[size];

HH

In above the template has two argument one T.type and other is built-in type (int).
If in main we write

sample<int, 30> objl;

sample<char, 20> obj2;
Then objl is array of 30 integer and ohj2 is array of 20 characters.

6.5 Standard Template Library (STL)

In order to help the C4+ users in generic programming, Alexander Stepanov and Meng Lee of Hewlett Packard developed a
site of general purpose templatized class‘(data structure) and functions (algorithms) that could be used as a standard approach
of storing and processing of data. The collection of these generic classes and functions is called the Standard Template Library
(STL). STL has now become a part of ANSI standard C++ class library.

Using STL we can'save considerable time and effort and lead to high quality programs, all these benefits are possible because
we are basically reusing the well written and well tested components defined in the STL. STL components are defined in the
namespace std. We must therefore use the using namespace directive.

o The STL provide a readymade set of common classes for C++ that can be used with any built-in type and with
any user defined type that supports some elementary operation

& STL algorithms are independent of containers, which significantly reduces the complexity of the library.

o It set out general purpose template classes (data structure) and functions that could be used as standard
approach for storing and processing of data.The collection of those classes and functions are called standard
template library.

o STL contents several components but as its core there are three components these three components works in
conjunction with one another to provide support to a variety of programming solutions

Syntax:
using namespace std;

Compiled by: - Naresh Prasad Das Page 114

Object Oriented Programming in C++ | Unit-6
L]

6.5.1 Components of STL:
The STL contains several components and they are

1. Containers
2. Algorithms
3. Iterators

These three components work in conjunction with one another to provide support to a variety of programming solutions. Figure
below shows algorithms employ iterators to perform operation stored in containers.

A container is an object that actually stores data. It is a way in which data is organized in memory. The STL containers are
implemented by template classes and therefore can be easily customized to hold different types of data. The container may
content single or multiple objects that store the data. The STL containers are implemented by template classes, and procedure
that is used to process data type

‘-“"'--—._._________,_.—--"‘"

Figure 6-1: Relationship between three STL components

An algorithm is a procedure used to process the data contained in the containers. The STL includes many different kinds of
algorithms to provide support to taskssuch as initializing, searching, coping, sorting and merging. Algorithms are implemented
by templates functions. The algorithnris.implemented by template.

Aniterator is an object {like'pointer) that points to an element in a container. We can use iterators to move through the contents
of containers. It is handled just like pointer and can be incremented and decremented. [terator connect algorithm with containers
and play a key role.in the'manipulation of data stored in the containers.

6.5.2 Featuresof STL
It helps in:saving time; efforts, load fast, high quality programming because STL provides well written and tested components,

which ¢an be rense in our program to make our program more robustness.

. ___|
Compiled by: - Naresh Prasad Das Page 115

Object Oriented Programming in C++ | Unit-6

6.6 Exception Handling

¥ The most common types of error (also known as bugs) occurred while programming in C++ are Logic error and

6.6.1

6.6.2

Syntactic error. The logic errors occur due to poor understanding of the problem and solution procedure. The syntactic
errors arise due to poor understanding of the language. These emrors are detected by using exhaustive debugging and
testing.

We often come across some peculiar problems other than logic or syntax errors. They are known as exceptions.
Exceptions are run-time anomalies or unusual conditions that a program may encounter while executing. Anomalies
might include conditions such as division by zero, access to an array outside of its bounds, or running out of memory
or disk space. ANSI C++ provides built-in language features to detect and handle exception which are basically run
time errors.

Exception handling was added to ANSII C4++, provides a type safe approach for copying with the unusual predictable
problems that arise while executing a program. So, exception handling is the mechanism by using which“we can
identify and deal such unusual conditions.

Basics of Exception Handling
Exceptions are of two kinds, namely, synchronous exception and asynchronous exception. Errors such as “out of range
index™ and “overflow” belong to synchronous type exceptions whereas errors that caused by events beyond the control
of the program (such as keyboard interrupts) are known as asynchronous exceptions:
The purpose of the exception handling mechanism is to provide means fo detect-and report an “exceptional
circumstances”, so that appropriate action can be taken. The exception handling mechanism in C++ can handle only
synchronous exceptions. The exception handling mechanism performs the following tasks:

1. Hit the exception i.e. find the unusual condition

2. Throw the exception i.e. inform that error has occurred

3. Catch the exception i.e. receive the error information

4. Handle the exception i.c. take the action for correction of problem

Exception Handling Mechanism
C++ exception handling mechanism is basically built upon three keywords namely try, throw and catch.
o The keyword try is used to preface a block of statements (surrounded by braces) which may generate
exception. This block of statement is known as try block.

Syntax:
try
{
/istatemert(s
/
o When as exception is detected it is thrown using a throw statement in the try block.
Svyntax:
throw(exception);

o Acatch block defined by the keyword catch, catches the exception thrown by the throw statement in the try
block and handles it appropriately.

Syntax:
catch(exception)
{
Hexception handling statements
Hor user notification statements
/
¥ The catch block must immediately follow the try block that throws the exception. The general syntax is
try
{

- - - - /{ block of statement which detects and throws exception.
throw exception ;

|
Compiled by: - Maresh Prasad Das Page 116

Object Oriented Programming in C++ | Unit-6

!
catch(type arg)
{

- - - - /{ block of statements that handles the exception

i

Throwing Mechanism:
The exception is thrown by the use of throw statement in one of the following ways:

throw(exception);

throw exception;

throw:
The object “exception” may be of any type or a constant. We can also throw an object not intended for error handling.
Catching Mechanism:
Code for handling exceptions is included in catch blocks. A catch block looks like a function definition-and is of the form:

catch(type arg)
{

/I statements for managing exceptions

I

The “type” indicates the type of exception that catch block handles. The parameter arg is an optional parameter name. The
exception handling code is placed between two braces. The:catch statementcatches an exception whose type matches with the
type of catch argument. When it is caught, the code in the catch block is executed.

Example 6-8: Write a program which reads two numbers‘and then:divide first number by second number. Raise exception if
second number is zero.

#include<iostream:=
#include<conio.h>
using namespace std;
int main()

{
int x,y:
cout<<"Enter first number(x):";
Ccinss>x:
cout<<"Enter second number(y):";
cin=>y;
try
{
if(y!=0)
cout<<"Division x/y="<<(x/y)<<endl;
clse
throw(y);
}
catch(int n)
{
cout<<"There is an exception division by zero"<<endl;
cout<<"second number="<<n;
! Output:
getch(); Enter first numbher{x>:8
return (0 Enter second number<{y?:@
! There is an e;:ce:pt ion division by zZero
second number=8

Compiled by: - Naresh Prasad Das Page 117

Object Oriented Programming in C++ | Unit-6

¥ Note: In example 6-8, the argument within catch is int type (i.e. catch(int n)) because exception object is an int type
(i.e. in statement throw(y), y is int type).

6.6.3 Exception generated by a function
¥ When we call afunction which generate the exception then the throw statement is written within function body.
return-type function_name(arg)

{
throw exception;

I
* We can call the function within try block

try

Example 6-9: Write a function which divide one number by another number. Raise exception if there is division by zero
condition. Call that thin try block.

#include<iostream>
#include<conio.h>
using namespace std;
void div(int f.int s)
{
if(s!=0)
cout<<"Divisionx/y="<<(f/s)<<endl;
else
throw(s);
}
int main()
{
int X,y
cout<<"Enter first number(x):";
Cinesx;
cout<<"Enter second number(y):";
cin>>y;
try
{
div(x.y):
}
catch(int n)
{
cout<<"There is an exception division by zero"<<endl;
cout<<"second number="<<n; Output:
fEnter first number<xy:
I E £i he <0 : 4
getch(); fEnter second number(y’:@
return (;

fThere iz an exception division by zero
fcecond number=8

I

Compiled by: - Naresh Prasad Das Page 118

Object Oriented Programming in C++ | Unit-6

6.6.4 Multiple catch statement
¥ If a program has more than one condition to throw an exception then we can use a multiple catch statement.
¥ Syntax of multiple catch statement

catch(typel arg)
{

{/block1
}
catch(type2 arg)
{

{/block2

}

catch(typen arg)
{
{//blockn

}

¥ When an exception is thrown from try block exception handlers. are searched in order for an appropriate match i.e. first
the type of exception thrown is checked with the type of arg of first'catch (with typel) if both has same type then the
cormresponding block is execute (blockl) if both has not same type then that checked with type of arg of second catch
{with type2) if there is a matched then body of second catch (block2) execute. If the type has not same as type of arg
of second catch then that checked with type of third catch and so on.

Example 6-10: Write a function which take an integer as an argument and raise an exception integer found if value of argument
is = 0, raise an exception character found is value of argument is = 0, raise an exception float if value of argument is < (.

#include<iostream=
#include<conio.h>
using namespace std;
void sample(int n)

{
try
{
ifin=0)
throw n;
else ifin=0)
throw 'n';
else

throw float(n);

!

catch(int x)

{
cout<<"Exception integer found"<<endl;
I
catch(char y)
{

cout<<"Exception character found"<<endl:

I

Compiled by: - Maresh Prasad Das Page 119

Object Oriented Programming in C++ | Unit-6

catch(float z)

{

cout<<"Exception float found"<<endl;

I

int main()

{
int a;
cout<<"Enter value of a:";
cin>>a;
sample(a);
cout<<"Enter value of a:";
cin>>a;
sample(a);
cout<<"Enter value of a:"; Output:
CI 22, i nte:ualue of azh
sample(a); fException integer found
gctch{}' iEnter value of at@
z fEvception character Found
return (; Enter value of az—7
! Exception float found

¥ Note: From above example we can say that function which generate exception can be called from main without within
try block if try and catch block are part of function.

6.6.5 Catch all exception
¥ If we have a situation, we are not able to anticipate all possible types of exceptions and therefore not able to design
independent catch handlers to catch them. In such:case, we can force a catch statement to catch all exceptions instead
of a certain type.
¥ For this we can use the following type of catch block:
catch(...)
{

}

Example 6-11: Write a program using function which take a parameter if the value of parameter>0 then throw integer type, if

parameter = () then throw character type, if parameter < 0 then throw float type exception but for all design only one catch
block.

#include<iostream=
#include<conio.h>
using namespace std;
void sample(int n)

{

try
{
ifin=>0)
throw n;
else if{in==0)
throw 'n"
else
throw float(n);
}
catchi...)
{

cout<<"Exception found"<<endl;

|
I

Compiled by: - Naresh Prasad Das Page 120

Object Oriented Programming in C++ | Unit-6

int main()
{
int a;
cout<<"Enter value of a:";
cin==a;
sample(a);
cout<<"Enter value of a:";
cin==a;
sample(a);
cout<<"Enter value of a:";
cin==a;
sample(a);

xception found
getch(); fEnter value of a:—7
wception found

return (;
}

6.6.6 Rethrowing exception
* For rethrowing exception we can write a statement like follows:
throw:
¥ This causes the current exception to be thrown to next enclosing try/catch sequence and is caught by a catch statement
listed after that enclosing try block.

Example 6-12:
#include<iostream:=
#include<conio.h>
using namespace std;
void sample(float n)

{
try
{
ifin==0.0)
throw n:
else
cout<<"value of (n)="<<n<<endl;
}
catch(float x)
{
cout<<"Exception within function"<<endl;
throw;
}
}
int main()
{
try
{
sample(20.5);
sample(0.0);
}
catch(float m)
{
cout<<"Exception within main"<<endl;
}
getch(); balue of <n» 0.5
return (; Exception within function
! Exception within main

Compiled by: - Naresh Prasad Das Page 121

Object Oriented Programming in C++

7 Object Oriented Design

A cursory explanation of object-oriented programming tends to emphasize the syntactic features of languages such as C++ or
Delphi, as opposed to their older, non object-oriented versions, C or Pascal. Thus, an explanation usually turns rather quickly
to issues such as classes and inheritance, message passing, and virtual and static methods. But such a description will miss the
most important point of object-oriented programming, which has nothing to do with syntax. Working in an object-oriented
language (that is, one that supports inheritance, message passing, and classes) is neither a necessary nor sufficient condition
for doing object-oriented programming. As we emphasized in Chapters 1 and 2, the most important aspect of OOP is the
creation of a universe of largely autonomous interacting agents. But how does one come up with such a system? The answer
is a design technique driven by the determination and delegation of responsibilities. The technique described in this.chapter is
termed responsibility-driven design.

7.1 Responsibility Implies Noninterference

As anyone can attest who can remember being a child, or who has raised children. responsibility is a sword that cuts both ways.
When you make an object (be it a child or a software system) responsible for specific actions, you expect a certain behavior,
at least when the rules are observed. But just as important, responsibility implies a degree of independence or noninterference.
If you tell a child that she is responsible for cleaning her room, you do not normally stand over-her and watch while that task
is being performed-that is not the nature of responsibility. Instead, you expect that, having issued a directive in the correct
fashion, the desired outcome will be produced.

The difference between conventional programming and object-oriented programming is'in many ways the difference between
actively supervising a child while she performs a task, and delegating to the child responsibility for that performance.
Conventional programming proceeds largely by doing something to something else-modifying a record or updating an array,
for example. Thus, one portion of code in a software system is often intimatelytied,. by control and data connections, to many
other sections of the system. Such dependencies can come about through the use of global variables, through use of pointer
values, or simply through inappropriate use of and dependence on‘implementation details of other portions of code. A
responsibility-driven design attempts to cut these links, or'atleast make them as unobtrusive as possible.

This notion might at first seem no more subtle than the conceptsof information hiding and modularity, which are important to
programming even in conventional languages. But responsibility-driven design elevates information hiding from a technique
to an art. This principle of information hiding becomes:vitally-important when one moves from programming in the small to
programming in the large.

One of the major benefits of object-oriented programming occurs when software subsystems are reused from one project to
the next. For example, a simulation manager might.-work for both a simulation of balls on a billiards table and a simulation of
fish in a fish tank. This ability to reuse.codeimplies that the software can have almost no domain-specific components; it must
totally delegate responsibility for domain-specific behavior to application-specific portions of the system. The ability to create
such reusable code is not one that iseasily learned-it requires experience, careful examination of case studies (paradigms, in
the original sense of the word). and useof a programming language in which such delegation is natural and easy to express. In
subsequent chapters, we will present several such examples.

7.2 Programming in the Small and in the Large
The difference between the development of individual projects and of more sizable software systems is often described as
programming in the small versus programming in the large.

Programming in the small characterizes projects with the following attributes:

¢ (Code is developed by a single programmer, or perhaps by a very small collection of programmers. A single
individual can understand all aspects of a project, from top to bottom, beginning to end.

¢ The major problem in the software development process is the design and development of algorithms for
dealing with the problem at hand.

Programming in the large, on the other hand, characterizes software projects with features such as the following:

¢ The software system is developed by a large team, often consisting of people with many different skills. There
may be graphic artists, design experts, as well as programmers. Individuals involved in the specification or
design of the system may differ from those involved in the coding of individual components, who may differ

122

Object Oriented Programming in C++

as well from those involved in the integration of various components in the final product. No single individual
can be considered responsible for the entire project, or even necessarily understands all aspects of the project.

¢ The major problem in the software development process is the management of details and the communication
of information between diverse portions of the project.

While the beginning student will usually be acquainted with programming in the small, aspects of many object-oriented
languages are best understood as responses to the problems encountered while programming in the large. Thus, some
appreciation of the difficulties involved in developing large systems is a helpful prerequisite to understanding OOP.

7.3 Why Begin with Behavior?
Why begin the design process with an analysis of behavior? The simple answer is that the behavior of a system is usually
understood long before any other aspect.

Earlier software development methodologies (those popular before the advent of object-oriented techniquesy concentrated on
ideas such as characterizing the basic data structures or the overall structure of function calls, often within the creation of a
formal specification of the desired application. But structural elements of the application can be identified only after a
considerable amount of problem analysis. Similarly, a formal specification often ended up as adocument understood by neither
programmer nor client. But behavior is something that can be described almost from the monient an idea is conceived, and
(often unlike a formal specification) can be described in terms meaningful to both the programmers and the client.

Responsibility-Driven Design (RDD), developed by Rebecca Wirfs-Brock, is an object-oriented design technique that is driven
by an emphasis on behavior at all levels of development. It is but one of many-altemative object-oriented design techniques.
We will illustrate the application of Responsibility-Driven Design with a case study

7.4 A Case Study in RDD

Imagine you are the chief software architect in a major computer firm. One day your boss walks into your office with an idea
that, it is hoped. will be the next major success in your product line. Yourassignment is to develop the Interactive Inrelligent
Kitchen Helper (Figure 7.1).

}j o o o | -_I:_I-j.'_|-'_|°_| i ///:
/ J

Figure 7-1: View of the Interactive Intelligent Kitchen Helper.

The task given to your software team is stated in very few words (written on what appears to be the back of a slightly-used
dinner napkin, in handwriting that appears to be your boss's).

7.4.1 The interactive Intelligent Kitchen Helper

Briefly, the Interactive Intelligent Kitchen Helper (ITKH) is a PC-based application that will replace the index-card system of
recipes found in the average kitchen. But more than simply maintaining a database of recipes, the kitchen helper assists in the
planning of meals for an extended period, say a week. The user of the IIKH can sit down at a terminal, browse the database of
recipes, and interactively create a series of menus. The ITKH will automatically scale the recipes to any number of servings
and will print out menus for the entire week, for a particular day, or for a particular meal. And it will print an integrated grocery

list of all the items needed for the recipes for the entire period.
L |

123

Object Oriented Programming in C++

Asis usually true with the initial descriptions of most software systems, the specification for the IIKH is highly ambiguous on
a number of important points. It is also true that, in all likelihood, the eventual design and development of the software system
to support the TKH will require the efforts of several programmers working together. Thus, the initial goal of the design team
must be to clarify the ambiguities in the description and to outline how the project can be divided into components to be
assigned for development to individual team members.

The fundamental cornerstone of object-oriented programming is to characterize software in terms of behavior; that is, actions
to be performed. We will see this repeated on many levels in the development of the TIKH. Initially, the team will try to
characterize, at a very high level of abstraction, the behavior of the entire application. This then leads to a description of the
behavior of various software subsystems. Only when all behavior has been identified and described will the software design
team proceed to the coding step. In the next several sections we will trace the tasks the software design team:will perform in
producing this application.

7.4.2 Working through Scenarios

The first task is to refine the specification. As we have already noted, initial specifications are almost always ambiguous and
unclear on anything except the most general points. There are several goals for this step. One objective is to get a better handle
on the ‘look and feel” of the eventual product. This information can then be carried back to the ¢lient (in this case, your boss)
to see if it is in agreement with the original conception. It is likely, perhaps inevitable, that the specifications for the final
application will change during the creation of the software system, and it is important that the design be developed to easily
accommodate change and that potential changes be noted as early as possible. Equally important, at this point very high level
decisions can be made concerning the structure of the eventual software system:In particular, the activities to be performed
can be mapped onto components.

In order to uncover the fundamental behavior of the system, the designteam first ¢reates a number of scenarios. That is, the
team acts out the running of the application just as if it already possessed a working system. An example scenario is shown in
Figure 7.2.

Simple Browsing

Alice Smith sits down ot her computer and starts the IDSH. When the program
egins, il displays o graphical bnage ol o recipe box, and identilies iisell as the
HTIKTL, porowdoet of TTRTD incorporated. Alice presses the retann huotton fo begin,

In response to the key press. Alice is given a cholce of a number of options. She
elects o browse the recipe indes, Tooking for a vecipe for Salmon that she wishes fo
propare for dinner the nesxt das. She entors the keyword Salmon, and 15 shown in
response a list ol varions recipes. She remembers seeing an inleresling recipe il
nsed dill-weed as a Havoring., She refines the search, entering the words Salmon and
dill-weed, This narrows the search to two recipes,

She selects the frst. This brings vap a new window in which an attractive piotnare
of the finished dish is displayed, along with the list of ingredients, preparation steps,
anel expected preparation time. Atter examining the recipe. Alce decides i Gs naot
the recipe she had in mind. She roturns to the scarch result page, and sclects the
second alternative,

Ezcamining this dish, Alice decides this is the one she had inomind. She requests
a printing of the recipe, and the output is spooled to her printer. Alice selects
“onit” fromn A program mentn, ancd the application onits.

Figure 7-2: An Example Scenario.

7.4.3 Identification of Components

The engineering of a complex physical system, such as a building or an auto-mobile engine, is simplified by dividing the
design into smaller units. So, too, the engineering of software is simplified by the identification and development of software
components. A component is simply an abstract entity that can perform tasks-that is, fulfill some responsibilities. At this point,
it is not necessary to know exactly the eventual representation for a component or how a component will perform a task. A
component may ultimately be turned into a function, a structure or class, or a collection of other components. At this level of
development there are just two important characteristics:

* A component must have a small well-defined set of responsibilities.

* A component should interact with other components to the minimal extent possible.

.|
124

Object Oriented Programming in C++
L]

7.5 CRC Cards-Recording Responsibility
As the design team walks through the various scenarios they have created, they identify the components that will be performing
certain tasks. Every activity that must take place is identified and assigned to some component as a responsibility.

Componeant Name Ccllaborators

List of
Deseription of thea

ather campnnents
o si b inies assipnied

£l v oncen

As part of this process, it is often useful to represent components using small index cards. Written on the face of the card is
the name of the software component, the responsibilities of the component, and the names of other components with which
the component must interact. Such cards are sometimes known as CRC (Component. ‘Responsibility, Collaborator) cards, and

are associated with each software component. As responsibilities for the component are discovered, they are recorded on the
face of the CRC card.

7.5.1 Give Components a Physical Representation

While working through scenarios, it is useful to assign CRC cards to different members of the design team. The member
holding the card representing a component records the responsibilities:of the associated software component, and acts as the
“surrogate” for the software during the scenario simulation: He or she describes the activities of the software system, passing
*control" to another member when the software system requires the services of another component.

An advantage of CRC cards is that they are widely available, inexpensive, and erasable. This encourages experimentation,
since alternative designs can be tried, explored, or abandoned with little investment. The physical separation of the cards
encourages an intuitive understanding of the importance of the logical separation of the various components, helping to
emphasize the cohesion and coupling (which we will describe shortly). The constraints of an index card are also a good measure
of approximate complexity-a component that is'expected to perform more tasks than can fit easily in this space is probably too
complex, and the team should find a simpler solution, perhaps by moving some responsibilities elsewhere to divide a task
between two or more new components:

7.5.2 The What/Who Cycle

As we noted at the beginning of this discussion, the identification of components takes place during the process of imagining
the execution of a working system. Often this proceeds as a cycle of what/who questions. First, the design team identifies what
activity needs to be performed next. This is immediately followed by answering the question of who performs the action. In
this manner, designing & software system is much like organizing a collection of people, such as a club. Any activity that is to
be performed must be assigned as a responsibility to some component.

A popular bumper sticker states that phenomena can and will spontaneously occur. (The bumper sticker uses a slightly shorter
phrase.) We kinow, however, that in real life this is seldom true. If any action is to take place, there must be an agent assigned
to perform it. Just as in the running of a club any action to be performed must be assigned to some individual. in organizing an
object-oriented program all actions must be the responsibility of some component. The secret to good object-oriented design
is to first establish an agent for each action.

7.53 Documentation

At this point the development of documentation should begin. Two documents should be essential parts of any software system:
the user manual and the system design documentation. Work on both of these can commence even before the first line of code
has been written.

The user manual describes the interaction with the system from the user's point of view; it is an excellent means of verifying
that the development team's conception of the application matches the client's. Since the decisions made in creating the

.|
125

Object Oriented Programming in C++

scenarios will closely match the decisions the user will be required to make in the eventual application, the development of the
user manual naturally dovetails with the process of walking through scenarios.

Before any actual code has been written, the mindset of the software team is most similar to that of the eventual users. Thus,
it is at this point that the developers can most easily anticipate the sort of questions to which a novice user will need answers.
A user manual is also an excellent tool to verify that the programming team is looking at the problem in the same way that the
client intended. A client seldom presents the programming team with a complete and formal specification, and thus some
reassurance and two-way communication early in the process, before actual programming has begun, can prevent major
misunderstandings.

The second essential document is the design documentation. The design documentation records the major decisions. made
during software design, and should thus be produced when these decisions are fresh in the minds of the creators; and not after
the fact when many of the relevant details will have been forgotten. It is often far easier to write a general global description
of the software system early in the development. Too soon, the focus will move to the level of individual components or
modules. While it is also important to document the module level, too much concern with the details of each module will make
it difficult for subsequent software maintainers to form an initial picture of the larger structure.

CRC cards are one aspect of the design docuwmentation, but many other important decisions are not reflected in them.
Arguments for and against any major design altematives should be recorded, as well“as factors that influenced the final
decisions. A log or diary of the project schedule should be maintained. Both the usér manual and the design documents are
refined and evolve over time in exactly the same way the software is refined and evolves.

7.6 Components and Behavior

To return to the IIKH, the team decides that when the system begins, the user will be presented with an attractive informative
window (see Figure 7.1). The responsibility for displaying this window is assigned to a component called the Greeter. In some
as yet unspecified manner (perhaps by pull-down menus, button or key presses: or use of a pressure-sensitive screen), the user
can select one of several actions. Initially, the team identifies just five actions:

Casually browse the database of existing recipes, but without réference to any particular meal plan.
Add anew recipe to the database.

Edit or annotate an existing recipe.

Review an existing plan for several meals.

Create a new plan of meals

Ll e

These activities seem to divide themselves naturally into two groups. The first three are associated with the recipe database;
the latter two are associated with menu plans. As a result, the team next decides to create components corresponding to these
two responsibilities. Continuing with the scenatio, the team elects to ignore the meal plan management for the moment and
move on to refine the activities of the Recipe Database component. Figure 7.3 shows the initial CRC card representation of
the Greeter.

Broadly speaking, the responsibility of the recipe database component is simply to maintain a collection of recipes. We have
already identified three elements of this task: The recipe component database must facilitate browsing the library of existing
recipes, editing the recipes;.and including new recipes in the database.

Grester Collaberators
Database Manager
IWspesen Informalive Luilinal Selemsiapes
Flan Manaper
Offer User Cholee of Options
Pass ool o sithe

Heoipe Database Manager

*lan Alanaper [on pocacessings

Figure 7-3: CRC card for the Greeter.
.|

1286

Object Oriented Programming in C++

7.6.1 Postponing Decisions

There are a number of decisions that must eventually be made concerning how best to let the user browse the database. For
example, should the user first be presented with a list of categories. such as “soups,” “salads.” “main meals." and “desserts"?
Alternatively, should the user be able to describe keywords to narrow a search, perhaps by providing a list of ingredients, and
then see all the recipes that contain those items (\Almonds, Strawberries, Cheese"), or a list of previously inserted keywords
(*Bob's favorite cake")? Should scroll bars be used or simulated thumb holes in a virtual book? These are fun to think about,
but the important point is that such decisions do not need to be made at this point (see Section 7.6.2, “Preparing for Change").
Since they affect only a single component, and do not affect the functioning of any other system, all that is necessary to
continue the scenario is to assert that by some means the user can select a specific recipe.

7.6.2 Preparing for Change

It has been said that all that is constant in life is the inevitability of uncertainty and change. The same is true of seftware. No
matter how carefully one tries to develop the initial specification and design of a software system, itis almost certain that
changes in the user's needs or requirements will, sometime during the life of the system, force changes to be made in the
software. Programmers and software designers need to anticipate this and plan accordingly.

® The primary objective is that changes should affect as few components as possible: :Even major changes in the
appearance or functioning of an application should be possible with alterations toonly one or two sections of code.

® Tryto predict the most likely sources of change and isolate the effects of such.changes toas few software components
as possible. The most likely sources of change are interfaces, communication formats, and output formats.

* Try to isolate and reduce the dependency of software on hardware. For example, the interface for recipe browsing in
our application may depend in part on the hardware on which the systeém is running. Future releases may be ported to
different platforms. A good design will anticipate this change.

* Reducing coupling between software components will reduce the dependence of one upon another, and increase the
likelihood that one can be changed with minimal effect on the other.

¢ In the design documentation maintain careful records of the design process and the discussions surrounding all major
decisions. It is almost certain that the individuals responsible for maintaining the software and designing future releases
will be at least partially different from the team producing the initial release. The design documentation will allow
future teams to know the important factors behind a decision and help them avoid spending time discussing issues that
have already been resolved.

7.6.3 Continuing the Scenario

Each recipe will be identified with a‘specific récipe component. Once a recipe is selected, control is passed to the associated
recipe object. A recipe must contain certain:informration. Basically, it consists of a list of ingredients and the steps needed to
transform the ingredients into the final*product:-In our scenario, the recipe component must also perform other activities. For
example, it will display the recipe interactively on the terminal screen. The user may be given the ability to annotate or change
cither the list of ingredients or‘the-instruction portion. Alternatively, the user may request a printed copy of the recipe. All of
these actions are the responsibility of the Recipe component. (For the moment, we will continue to describe the Recipe in
singular form. During design we.can think of this as a prototypical recipe that stands in place of a multitude of actual recipes.
We will later return to a discussion of singular versus multiple components.)

Having outlined the actions that must take place to permit the user to browse the database, we return to the recipe database
manager and pretend the user has indicated a desire to add a new recipe. The database manager somehow decides in which
category to place the new recipe (again, the details of how this is done are unimportant for our development at this point),
requests the name of the new recipe, and then creates a new recipe component, permitting the user to edit this new blank entry.
Thus, the responsibilities of performing this new task are a subset of those we already identified in permitting users to edit
existing recipes. Having explored the browsing and creation of new recipes, we return to the Greeter and investigate the
development of daily menu plans, which is the Plan Manager's task. In some way (again, the details are unimportant here) the
user can save existing plans. Thus, the Plan Manager can either be started by retrieving an already developed plan or by creating
a new plan. In the latter case, the user is prompted for a list of dates for the plan. Each date is associated with a separate Date
component. The user can select a specific date for further investigation, in which case control is passed to the corresponding
Date component. Another activity of the Plan Manager is printing out the recipes for the planning period. Finally, the user can
instruct the Plan Manager to produce a grocery list for the period.

The Date component maintains a collection of meals as well as any other an-notations provided by the user (birthday

celebrations, anniversaries, reminders, and so on). It prints information on the display concerning the specified date. By some
=

127

Object Oriented Programming in C++

means (again unspecified), the user can indicate a desire to print all the information concerning a specific date or choose to
explore in more detail a specific meal. In the latter case, control is passed to a Meal component.

-~

[Gireeter :l
S e
r -
L - -
A '\l 'rt' '\‘
f Flan Manager | | Recips Database |
. - e ke
. s + =
. / ..
|"-. ¢
/ .
f Natrs T - ’ ~. — -~
. K '-__‘_H i & ¥y _ 2
- 4 el) (Heoipe)

Figure 7<4: Communication between the six components in the ITKH.

The Meal component maintains a collection of augmented recipes, where the augmentation refers to the user's desire to double,
triple, or otherwise increase a recipe. The Meal component displays information about the meal. The user can add or remove
recipes from the meal, or can instruct that information about the meal be printed. In order to discover new recipes, the user
must be permitted at this point to browse the recipe database. Thus, the Meal component must interact with the recipe database
component. The design team will continue in this fashion, investigating every possible scenario. The major category of
scenarios we have not developed here is exceptional cases. For example, what happens if a user selects a number of keywords
for a recipe and no matching recipe is found? How can the user cancel an activity, such as entering a new recipe, if he or she
decides not to continue? Each possibility must be explored, and the responsibilities for handling the situation assigned to one
Of MOre CoMmponents.

Having walked through the various scenarios, the software design team‘eventually decides that all activities can be adequately
handled by six components (Figure 7.4). The Greeter needs to communicate only with the Plan Manager and the Recipe
Database components. The Plan Manager needs to communicate only withithe Date component; and the Date agent, only with
the Meal component. The Meal component communicates with the Recipe Manager and. through this agent, with individual
recipes.

7.64 Interaction Diagrams

While a description such as that shown in Figure 7.4 may describe the static relationships between components, it is not very
good for describing their dynamic interactions during the execution of a scenario. A better tool for this purpose is an interaction
diagram. Figure 7.5 shows the beginning of an.interaction diagram for the interactive kitchen helper. In the diagram, time
moves forward from the top to the bottom: Each component is represented by a labeled vertical line. A component sending a
message to another component is represented by a‘horizontal arrow from one line to another. Similarly, a component returning
control and perhaps a result value back to the caller is represented by an arrow. (Some authors use two different arrow forms,
such as a solid line to represent message passing and a dashed line to represent returning control.) The commentary on the
right side of the figure explains more fully the interaction taking place.

Cireeter Database Recipe Planner Clormment,

- Message browsel()

Message display()

Return from display()

Return from browse()

Message makePlan()

Figure 7-5: An Example interaction diagram.

With a time axis, the interaction diagram is able to describe better the sequencing of events during a scenario. For this reason,
interaction diagrams can be a useful documentation tool for complex software systems.

128

Object Oriented Programming in C++

7.7 Software Components
In this section we will explore a software component in more detail. As is true of all but the most trivial ideas, there are many
aspects to this seemingly simple concept.

7.7.1 Behavior and State

We have already seen how components are characterized by their behavior, that is, by what they can do. But components may
also hold certain information. Let us take as our prototypical component a Recipe structure from the ITKH. One way to view
such a component is as a pair consisting of behavior and state.

® The behavior of a component is the set of actions it can perform. The complete description of all the behavior for a
component is sometimes called the protocol. For the Recipe component this includes activities such as editing the
preparation instructions, displaying the recipe on a terminal screen, or printing a copy of the recipe.

e The state of a component represents all the information held within it at a given point of tirme. For our Recipe
component the state includes the ingredients and preparation instructions. Notice that the state is not static ‘and can
change over time. For example, by editing a recipe {a behavior) the user can make changes to.the preparation
instructions (part of the state).

It is not necessary that all components maintain state information. For example, it is possible that the Greeter component will
not have any state since it does not need to remember any information during the course of execution. However, most
components will consist of a combination of behavior and state.

7.7.2 Instances and Classes

The separation of state and behavior permits us to clarify a point we avoided in our earlier discussion. Note that in the real
application there will probably be many different recipes. However, all of these recipés will perform in the same manner. That
is, the behavior of each recipe is the same: it is only the state-the individual lists of ingredients and instructions for preparation-
that differs between individual recipes. In the early stages of development ourinterest is in characterizing the behavior common
to all recipes; the details particular to any one recipe are unimportant.

The term class is used to describe a set of objects with similar behavior. We will see in later chapters that a class is also used
as a syntactic mechanism in almost all object-oriented languages. An individual representative of a class is known as an
instance. Note that behavior is associated with a class. not with an individual. That is, all instances of a class will respond to
the same instructions and perform in a similar manner. On the other hand, state is a property of an individual. We see this in
the various instances of the class Recipe. They can all perform the same actions (editing, displaying, printing) but use different
data values.

7.7.3 Coupling and Cohesion

Two important concepts in the design of software components are coupling and cohesion. Cohesion is the degree to which the
responsibilities of a single compenent form a meaningful unit. High cohesion is achieved by associating in a single component
tasks that are related in some manner. Probably the most frequent way in which tasks are related is through the necessity to
access a common data value: This is the overriding theme that joins, for example, the various responsibilities of the Recipe
component.

Coupling, on the‘other hand; describes the relationship between software components. In general. it is desirable to reduce the
amount of coupling as:much as possible, since connections between software components inhibit ease of development,
modification. or reuse:

In particular, coupling is increased when one software component must access data values-the state-held by another
component..Such situations should almost always be avoided in favor of moving a task into the list of responsibilities of the
component-that holds the necessary data. For example, one might conceivably first assign responsibility for editing a recipe to
the Recipe Database component, since it is while performing tasks associated with this component that the need to edit a recipe
first occurs. But if we did so. the Recipe Database agent would need the ability to directly manipulate the state (the intemal
data values representing the list of ingredients and the preparation instructions) of an individual recipe. It is better to avoid this
tight connection by moving the responsibility for editing to the recipe itself.

7.74 Interface and Implementation-Parnas’s Principles
The emphasis on characterizing a software component by its behavior has one extremely important consequence. It is possible
for one programmer to know how to use a component developed by another programmer, without needing to know how the

L __|]
129

Object Oriented Programming in C++

component is implemented. For example, suppose each of the six components in the IIKH is assigned to a different
programumer. The programmer developing the Meal component needs to allow the ITIKH user to browse the database of recipes
and select a single recipe for inclusion in the meal. To do this, the Meal component can simply invoke the browse behavior
associated with the Recipe Database component, which is defined to return an individual Recipe. This description is valid
regardless of the particular implementation used by the Recipe Database component to perform the actual browsing action.

The purposeful omission of implementation details behind a simple interface is known as information hiding. We say the
component encapsulates the behavior, showing only how the component can be used, not the detailed actions it performs. This
naturally leads to two different views of a software system. The interface view is the face seen by other programmers. It
describes what a software component can perform. The implementation view is the face seen by the programmer working on
a particular component. It describes how a component goes about completing a task.

The separation of interface and implementation is perhaps the most important concept in software engineering. Yetitisdifficult
for students to understand, or to motivate. Information hiding is largely meaningful only in the context - of multiperson
programming projects. In such efforts, the limiting factor is often not the amount of coding involved: but-the amount of
communication required between the various programmers and between their respective software systems. As we will describe
shortly, software components are often developed in parallel by different programmers, and.in‘isolation from each other.

There is also an increasing emphasis on the reuse of general-purpose software componentsin multiple projects. For this to be
successful, there must be minimal and well-understood interconnections between the: various portions of the system. As we
noted in the previous chapter, these ideas were captured by computer scientist David Parnas in a pair of rules, known as Parnas's
principles:

® The developer of a software component must provide the intended ‘user with all the information needed to make
effective use of the services provided by the component, and should provide no other information.

® The developer of a software component must be provided with all the information necessary to carry out the given
responsibilities assigned to the component, and should be provided with no other information.

A consequence of the separation of interface from implementation. is that a programmer can experiment with several different
implementations of the same structure without affecting other software components.

7.8 Formalize the Interface

We continue with the description of the IIKH development. In the next several steps the descriptions of the components will
be refined. The first step in this process.is to:formalize the patterns and channels of communication.

A decision should be made as to the general:structure that will be used to implement each component. A component with only
one behavior and no internal state may be made into a function-for example, a component that simply takes a string of text and
translates all capital letters to lowercase.Components with many tasks are probably more easily implemented as classes. Names
are given to each of the responsibilities identified on the CRC card for each component, and these will eventually be mapped
onto method names. Along with the: names, the types of any arguments to be passed to the function are identified. Next, the
information maintained within the.component itself should be described. All information must be accounted for. If a component
requires some data to'perform a specific task, the source of the data, either through argument or global value, or maintained
internally by the component.. must be clearly identified.

7.8.1 Coming up with Names

Careful thought should be given to the names associated with various activities. Shakespeare said that a name change does not
alter the object ‘being described, but certainly not all names will conjure up the same mental images in the listener. As
government. bureaucrats have long known, obscure and idiomatic names can make even the simplest operation sound
intimidating. The selection of useful names is extremely important, as names create the vocabulary with which the eventual
design will be formulated. Names should be intemally consistent, meaningful, preferably short, and evocative in the context
of the problem. Often a considerable amount of time is spent finding just the right set of tenms to describe the tasks performed
and the objects manipulated. Far from being a barren and useless exercise, proper naming early in the design process greatly
simplifies and facilitates later steps.

The following general guidelines have been suggested:

s Use pronounceable names. As a rule of thumb, if you cannot read a name out loud, it is not a good one.

L ___|]
130

Object Oriented Programming in C++

¢ Use capitalization (or underscores) to mark the beginning of a new word within a name, such as “CardReader”
or “Card_reader,” rather than the less readable “cardreader.”

s Examine abbreviations carefully. An abbreviation that is clear to one person may be confusing to the next. Is
a “TermProcess” a terminal process, something that terminates processes, or a process associated with a termi-
nal?

* Avoid names with several interpretations. Does the empty function tell whether something is empty, or empty
the values from the object?

s Avoid digits within a name. They are easy to misread as letters (Oas O, 1 as L. 2as Z, 5asS).

¢ Name functions and variables that yield Boolean values so they describe clearly the interpretationof a true or
false value. For example, “Printer-IsReady” clearly indicates that a true value means the printer is working,
whereas “PrinterStatus” is much less precise.

s Take extra care in the selection of names for operations that are costly and infrequently used. By doing so,
errors caused by using the wrong function can be avoided.

Once names have been developed for each activity, the CRC cards for each component are redrawn, with the name and formal
arguments of the function used to elicit each behavior identified. An example of a CRC card for the Date is shown in Figure
7.6. What is not yet specified is how each component will perform the associated tasks.

Once more, scenarios or role playing should be carried out at a more detailed level to ensure that all activities are accounted
for, and that all necessary information is maintained and made available to the responsible components.

Date Collaberators
Flan Manager
Mamesin informacion sboon specifie dace
; Wl eal
Date(year. manth. day)—creale new dale
DisplayAndEdit{ }—clisplay dave intormation
in window allowsing ser toocdit cntrics
Build GroceryList{ List &) suled ibomms from

all meals to grovers list

Figure 746: Revised CRC card for the Date component.

7.9 Designing the Representation

At this point, if not before, thedesign team can be divided into groups, each responsible for one or more software components.
The task now is to transform the description of a component into a software system implementation. The major portion of this
process is designing the data structures that will be used by each subsystem to maintain the state information required to fulfill
the assigned responsibilities.

It is here that the classic data structures of computer science come into play. The selection of data structures is an important
task, central to the software design process. Once they have been chosen, the code used by a component in the fulfillment of a
responsibility is often almost self-evident. But data structures must be carefully matched to the task at hand. A wrong choice
can restlt in complex and inefficient programs, while an intelligent choice can result in just the opposite.

It is also at'this point that descriptions of behavior must be transformed into algorithms. These descriptions should then be
matched against the expectations of each component listed as a collaborator, to ensure that expectations are fulfilled and
necessary data items are available to carry out each process.

7.10 Implementing Components

Once the design of each software subsystem is laid out, the next step is to implement each component's desired behavior. If
the previous steps were correctly addressed, each responsibility or behavior will be characterized by a short description. The
task at this step is to implement the desired activities in a computer language. In a later section we will describe some of the
more common heuristics used in this process.

151

Object Oriented Programming in C++

If they were not determined earlier (say, as part of the specification of the system), then decisions can now be made on issues
that are entirely self-contained within a single component. A decision we saw in our example problem was how best to let the
user browse the database of recipes.

As multiperson programming projects become the norm, it becomes increasingly rare that any one programmer will work on
all aspects of a system. More often, the skills a programmer will need to master are understanding how one section of code fits
into a larger framework and working well with other members of a team.

Often, in the implementation of one component it will become clear that certain information or actions might be assigned to
yet another component that will act “behind the scene," with little or no visibility to users of the software abstraction. Such
components are sometimes known as facilitators. We will see examples of facilitators in some of the later case studies:

An important part of analysis and coding at this point is characterizing and documenting the necessary preconditions a software
component requires to complete a task, and verifying that the software component will perform correctly when presented with
legal input values.

7.11 Integration of Components

Once software subsystems have been individually designed and tested, they can be integrated into thefinal product. This is
often not a single step, but part of a larger process. Starting from a simple base, elementsare slowly-added to the system and
tested, using stubs-simple dummy routines with no behavior or with very limited behavior-for the as yet unimplemented parts.

For example, in the development of the ITKH, it would be reasonable to start integration with the Greeter component. To test
the Greeter in isolation, stubs are written for the Recipe Database manager and the daily Meal Plan manager. These stubs need
not do any more than print an informative message and return. With these. the component development team can test various
aspects of the Greeter system (for example, that button presses elicit the'correct response). Testing of an individual component
is often referred to as unit testing.

Next, one or the other of the stubs can be replaced by more complete code. For example, the team might decide to replace the
stub for the Recipe Database component with the actual system; maintaining the stub for the other portion. Further testing can
be performed until it appears that the system is working as desired: {This is sometimes referred to as integration testing.)

The application is finally complete when all stubs have been replaced with working components. The ability to test components
in isolation is greatly facilitated by the consciousdesign goal of reducing connections between components. since this reduces
the need for extensive stubbing.

During integration it is not uncommon for-an errorto be'manifested in one software system, and yet to be caused by a coding
mistake in another system. Thus, testing during integration can involve the discovery of errors. which then results in changes
to some of the components. Following these changes the components should be once again tested in isolation before an attempt
to reintegrate the software, once more, into-the larger system. Reexecuting previously developed test cases following a change
to a software component is sometimes referred to as regression testing.

7.12 Maintenance and Evolution

It is tempting to think that once a working version of an application has been delivered the task of the software development
team is finished.-Unfortunately, that is almost never true. The term software maintenance describes activities subsequent to
the delivery of'the initial working version of a software system. A wide variety of activities fall into this category.

® Errors, or bugs, can be discovered in the delivered product. These must be corrected, either in updates or corrections
to existing releases or in subsequent releases.

» Requircments may change, perhaps as a result of government regulations or standardization among similar products.

* Hardware may change. For example, the system may be moved to different platforms, or input devices, such as a pen-
based system or a pressure-sensitive touch screen, may become available. Output technology may change-for example,
from a text-based system to a graphical window-based arrangement.

o User expectations may change. Users may expect greater functionality, lower cost, and easier use. This can occur as a
result of competition with similar products. Better documentation may be requested by users.

A good design recognizes the inevitability of changes and plans an accommodation for them from the very beginning.

132

